cvsl_auc: Calculate cross-validated AUC from CV.SuperLearner result

Description Usage Arguments Value References See Also Examples

View source: R/cvsl_auc.R

Description

Also calculates confidence interval. Based on initial code by Alan Hubbard.

Usage

1
cvsl_auc(cvsl)

Arguments

cvsl

CV.SuperLearner object

Value

List with cvAUC and ci elements.

References

LeDell, E., Petersen, M., & van der Laan, M. (2015). Computationally efficient confidence intervals for cross-validated area under the ROC curve estimates. Electronic journal of statistics, 9(1), 1583.

Polley EC, van der Laan MJ (2010) Super Learner in Prediction. U.C. Berkeley Division of Biostatistics Working Paper Series. Paper 226. http://biostats.bepress.com/ucbbiostat/paper266/

Sing, T., Sander, O., Beerenwinkel, N., & Lengauer, T. (2005). ROCR: visualizing classifier performance in R. Bioinformatics, 21(20), 3940-3941.

van der Laan, M. J., Polley, E. C. and Hubbard, A. E. (2007) Super Learner. Statistical Applications of Genetics and Molecular Biology, 6, article 25. http://www.degruyter.com/view/j/sagmb.2007.6.issue-1/sagmb.2007.6.1.1309/sagmb.2007.6.1.1309.xml

See Also

sl_auc_table cvsl_plot_roc ci.cvAUC

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
library(SuperLearner)
library(ck37r)
data(Boston, package = "MASS")

set.seed(1, "L'Ecuyer-CMRG")

# Subset rows to speed up example computation.
row_subset = sample(nrow(Boston), 100)

Boston = Boston[row_subset, ]
X = subset(Boston, select = -chas)

cvsl = CV.SuperLearner(Boston$chas, X[, 1:2], family = binomial(),
                      cvControl = list(V = 2, stratifyCV = TRUE),
                      SL.library = c("SL.mean", "SL.glm"))
cvsl_auc(cvsl)

ck37r documentation built on June 4, 2017, 1:02 a.m.