plot.SuperLearner: Plot estimated risk and confidence interval for each learner

Description Usage Arguments Value References See Also Examples

View source: R/plot.SuperLearner.R

Description

Does not include SuperLearner or Discrete SL results as that requires CV.SuperLearner to estimate the standard errors.

Usage

1
2
3
## S3 method for class 'SuperLearner'
plot(x, Y = x$Y, constant = qnorm(0.975),
  sort = TRUE, ...)

Arguments

x

SuperLearner result object

Y

Outcome vector

constant

Multiplier of the standard error for confidence interval construction.

sort

If TRUE re-orders the results by risk estimate.

...

Any remaining arguments (unused).

Value

plot object; print to display.

References

Polley EC, van der Laan MJ (2010) Super Learner in Prediction. U.C. Berkeley Division of Biostatistics Working Paper Series. Paper 226. http://biostats.bepress.com/ucbbiostat/paper266/

van der Laan, M. J., Polley, E. C. and Hubbard, A. E. (2007) Super Learner. Statistical Applications of Genetics and Molecular Biology, 6, article 25. http://www.degruyter.com/view/j/sagmb.2007.6.issue-1/sagmb.2007.6.1.1309/sagmb.2007.6.1.1309.xml

See Also

SuperLearner

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
library(SuperLearner)
library(ck37r)

data(Boston, package = "MASS")

set.seed(1)
sl = SuperLearner(Boston$medv, subset(Boston, select = -medv), family = gaussian(),
                 SL.library = c("SL.mean", "SL.glmnet"))

sl
plot(sl, Y = Boston$chas)

ck37r documentation built on June 4, 2017, 1:02 a.m.