| "Extract.emaxsimB" | R Documentation | 
Extract a simulated data set from the output of emaxsimB. Data are re-created using the stored random number seed.
## S3 method for class 'emaxsimB'
x[i, ...]
| x | Output object from  | 
| i | Simulation replication to extract | 
| ... | Parameters passed to other functions (none currently) | 
Re-creates the ith simulated data set for subsequent analyses.  Also returns all
analyses done for the ith data set in  emaxsimB
A list is returned with class(emaxsimBobj) containing:
| y | Response vector | 
| dose | Doses corresponding to  | 
| pop | Population parameters; type of parameter depends on constructor function generating study data. | 
| popSD | Vector containing the population SD used to generate
continuous data.   | 
| binary | When  | 
| modType | 
 | 
| predpop | Population means for each dose group | 
| dm | Vector containing dose group means | 
| dsd | Vector containing dose group SDs | 
| fitpred | Posterior means of the dose groups means | 
| sepred | SE (posterior SD) corresponding to the estmates in fitpred | 
| sedif | SE (posterior SD) for the differences with placebo | 
| bfit | Bayesian fitted model of class  | 
| prior, mcmc | See  | 
| pVal, selContrast | P-value and contrast selected from MCP-MOD test | 
| idmax | Index of default dose group for comparison to placebo | 
Extraction from a simulation object requires re-creation of the simulated data set. If the extracted object is to be used more than once, it is more efficient to save the extracted object than reuse [].
Neal Thomas
emaxsimB, print.emaxsimBobj, 
plot.emaxsimBobj 
## Not run: 
save.seed<-.Random.seed
set.seed(12357)
nsim<-50
idmax<-5
doselev<-c(0,5,25,50,100)
n<-c(78,81,81,81,77)
Ndose<-length(doselev)
### population parameters for simulation
e0<-2.465375 
ed50<-67.481113 
dtarget<-100
diftarget<-2.464592
emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0)
sdy<-7.967897
pop<-c(log(ed50),emax,e0)    
meanlev<-emaxfun(doselev,pop)  
###FixedMean is specialized constructor function for emaxsim
gen<-FixedMean(n,doselev,meanlev,sdy)  
prior<-emaxPrior.control(epmu=0,epsca=30,difTargetmu=0,
		difTargetsca=30,dTarget=100,p50=50,sigmalow=0.1,
		sigmaup=30,parmDF=5)
mcmc<-mcmc.control(chains=1,warmup=500,iter=5000,seed=53453,propInit=0.15,adapt_delta = 0.95)
D1 <- emaxsimB(nsim,gen, prior, modType=3,mcmc=mcmc,check=FALSE)
out<-D1[2]
.Random.seed<-save.seed
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.