Nothing
#' Example Data With Different Response and Predictor Types
#'
#' @description
#'
#' The response variable is a Vegetation Index encoded in different ways to help highlight the package capabilities:
#' \itemize{
#' \item `vi_numeric`: continuous vegetation index values in the range 0-1.
#' \item `vi_counts`: simulated integer counts created by multiplying `vi_numeric` by 1000 and coercing the result to integer.
#' \item `vi_binomial`: simulated binomial variable created by transforming `vi_numeric` to zeros and ones.
#' \item `vi_categorical`: character variable with the categories "very_low", "low", "medium", "high", and "very_high", with thresholds located at the quantiles of `vi_numeric`.
#' \item `vi_factor`: `vi_categorical` converted to factor.
#' }
#'
#' The names of all predictors (continuous, integer, character, and factors) are in [vi_predictors].
#'
#' @usage data(vi)
#' @seealso [vi_predictors]
#'
#' @format Data frame with 30.000 rows and 68 columns.
#' @family example_data
"vi"
#' All Predictor Names in Example Data Frame vi
#'
#' @usage data(vi_predictors)
#' @seealso [vi]
#'
#' @format Character vector with predictor names.
#' @family example_data
"vi_predictors"
#' All Numeric Predictor Names in Example Data Frame vi
#'
#' @usage data(vi_predictors_numeric)
#' @seealso [vi]
#'
#' @format Character vector with predictor names.
#' @family example_data
"vi_predictors_numeric"
#' All Categorical and Factor Predictor Names in Example Data Frame vi
#'
#' @usage data(vi_predictors_categorical)
#' @seealso [vi]
#'
#' @format Character vector with predictor names.
#' @family example_data
"vi_predictors_categorical"
#' One response and four predictors with varying levels of multicollinearity
#'
#' Data frame with known relationship between responses and predictors useful
#' to illustrate multicollinearity concepts. Created from [vi] using the code
#' shown in the example.
#'
#' Columns:
#' \itemize{
#' \item `y`: response variable generated from `a * 0.75 + b * 0.25 + noise`.
#' \item `a`: most important predictor of `y`, uncorrelated with `b`.
#' \item `b`: second most important predictor of `y`, uncorrelated with `a`.
#' \item `c`: generated from `a + noise`.
#' \item `d`: generated from `(a + b)/2 + noise`.
#' }
#'
#' These are variance inflation factors of the predictors in `toy`.
#' variable vif
#' b 4.062
#' d 6.804
#' c 13.263
#' a 16.161
#'
#' @usage data(toy)
#'
#' @format Data frame with 2000 rows and 5 columns.
#' @family example_data
"toy"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.