Simulated amount datasets

Description

Several simulated datasets intended as reference examples for various conceptual and statistical models of compositions and amounts.

Usage

1

Format

Data matrices with 60 cases and 3 or 5 variables.

Details

The statistical analysis of amounts and compositions is set to discussion. Four essentially different approaches are provided in this package around the classes "rplus", "aplus", "rcomp", "acomp". There is no absolutely "right" approach, since there is a conection between these approaches and the processes originating the data. We provide here simulated standard datasets and the corresponding simulation procedures following these several models to provide "good" analysis examples and to show how these models actually look like in data.

The data sets are simulated according to correlated lognormal distributions (sa.lognormals, sa.lognormal5), winsorised correlated normal distributions (sa.tnormals, sa.tnormal5), Dirichlet distribution on the simplex (sa.dirichlet, sa.dirichlet5), uniform distribution on the simplex (sa.uniform, sa.uniform5), and a grouped dataset (sa.groups, sa.groups5) with three groups (given in sa.groups.area and sa.groups5.area) all distributed accordingly with a lognormal distribution with group-dependent means.

We can imagine that amounts evolve in nature e.g. in part of the soil they are diluted and transported in a transport medium, usually water, which comes from independent source (the rain, for instance) and this new composition is normalized by taking a sample of standard size. For each of the datasets sa.X there is a corresponding sa.X.dil dataset which is build by simulating exactly that process on the corresponding sa.X dataset . The amounts in the sa.X.dil are given in ppm. This idea of a transport medium is a major argument for a compositional approach, because the total amount given by the sum of the parts is induced by the dilution given by the medium and thus non-informative for the original process investigated.

If we imagine now these amounts flowing into a river and sedimenting, the different contributions are accumulated along the river and renormalized to a unit portion on taking samples again. For each of the dataset sa.X.dil there is a corresponding sa.X.mix dataset which is built from the corresponding sa.X dataset by simulating exactly that accumulation process. Mixing of different compositions is a major argument against the log based approaches (aplus, acomp) since mixing is a highly nonlinear operation in terms of log-ratios.

Author(s)

K.Gerald v.d. Boogaart http://www.stat.boogaart.de

Source

The datasets are simulated for this package and are under the GNU Public Library Licence Version 2 or newer.

References

http://www.stat.boogaart.de/compositions/data

Aitchison, J. (1986) The Statistical Analysis of Compositional Data Monographs on Statistics and Applied Probability. Chapman & Hall Ltd., London (UK). 416p.

Rehder, S. and U. Zier (2001) Letter to the Editor: Comment on ”Logratio Analysis and Compositional Distance” by J. Aitchison, C. Barcel\'o -Vidal, J.A. Mart\'in-Fern\'andez and V. Pawlowsky-Glahn, Mathematical Geology, 33 (7), 845-848.

Zier, U. and S. Rehder (2002) Some comments on log-ratio transformation and compositional distance, Terra Nostra, Schriften der Alfred Wegener-Stiftung, 03/2003

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
data(SimulatedAmounts)
plot.acomp(sa.lognormals)
plot.acomp(sa.lognormals.dil)
plot.acomp(sa.lognormals.mix)
plot.acomp(sa.lognormals5)
plot.acomp(sa.lognormals5.dil)
plot.acomp(sa.lognormals5.mix)

plot(acomp(sa.missings))
plot(acomp(sa.missings5))

#library(MASS)
plot.rcomp(sa.tnormals)
plot.rcomp(sa.tnormals.dil)
plot.rcomp(sa.tnormals.mix)
plot.rcomp(sa.tnormals5)
plot.rcomp(sa.tnormals5.dil)
plot.rcomp(sa.tnormals5.mix)

plot.acomp(sa.groups,col=as.numeric(sa.groups.area),pch=20)
plot.acomp(sa.groups.dil,col=as.numeric(sa.groups.area),pch=20)
plot.acomp(sa.groups.mix,col=as.numeric(sa.groups.area),pch=20)
plot.acomp(sa.groups5,col=as.numeric(sa.groups.area),pch=20)
plot.acomp(sa.groups5.dil,col=as.numeric(sa.groups.area),pch=20)
plot.acomp(sa.groups5.mix,col=as.numeric(sa.groups.area),pch=20)

plot.acomp(sa.uniform)
plot.acomp(sa.uniform.dil)
plot.acomp(sa.uniform.mix)
plot.acomp(sa.uniform5)
plot.acomp(sa.uniform5.dil)
plot.acomp(sa.uniform5.mix)

plot.acomp(sa.dirichlet)
plot.acomp(sa.dirichlet.dil)
plot.acomp(sa.dirichlet.mix)
plot.acomp(sa.dirichlet5)
plot.acomp(sa.dirichlet5.dil)
plot.acomp(sa.dirichlet5.mix)

# The data was simulated with the following commands:

#library(MASS)
dilution <- function(x) {clo(cbind(x,exp(rnorm(nrow(x),5,1))))[,1:ncol(x)]*1E6}
seqmix   <- function(x) {clo(apply(x,2,cumsum))*1E6}


vars  <- c("Cu","Zn","Pb")
vars5 <- c("Cu","Zn","Pb","Cd","Co")

sa.lognormals <- structure(exp(matrix(rnorm(3*60),ncol=3) %*%
                               chol(matrix(c(1,0.8,-0.2,0.8,1,
                                             -0.2,-0.2,-0.2,1),ncol=3))+
                               matrix(rep(c(1:3),each=60),ncol=3)),
                           dimnames=list(NULL,vars))

plot.acomp(sa.lognormals)
pairs(sa.lognormals)

sa.lognormals.dil <- dilution(sa.lognormals)
plot.acomp(sa.lognormals.dil)
pairs(sa.lognormals.dil)

sa.lognormals.mix <- seqmix(sa.lognormals.dil)
plot.acomp(sa.lognormals.mix)
pairs(sa.lognormals.mix)


sa.lognormals5 <- structure(exp(matrix(rnorm(5*60),ncol=5) %*%
                               chol(matrix(c(1,0.8,-0.2,0,0,
                                             0.8,1,-0.2,0,0,
                                             -0.2,-0.2,1,0,0,
                                             0,0,0,5,4.9,
                                             0,0,0,4.9,5),ncol=5))+
                               matrix(rep(c(1:3,-2,-2),each=60),ncol=5)),
                           dimnames=list(NULL,vars5))

plot.acomp(sa.lognormals5)
pairs(sa.lognormals5)

sa.lognormals5.dil <- dilution(sa.lognormals5)
plot.acomp(sa.lognormals5.dil)
pairs(sa.lognormals5.dil)

sa.lognormals5.mix <- seqmix(sa.lognormals5.dil)
plot.acomp(sa.lognormals5.mix)
pairs(sa.lognormals5.mix)



sa.groups.area <- factor(rep(c("Upper","Middle","Lower"),each=20))
sa.groups <- structure(exp(matrix(rnorm(3*20*3),ncol=3) %*%
                               chol(0.5*matrix(c(1,0.8,-0.2,0.8,1,
                                             -0.2,-0.2,-0.2,1),ncol=3))+
                               matrix(rep(c(1,2,2.5,2,2.9,5,4,2,5),
                                          each=20),ncol=3)),
                           dimnames=list(NULL,c("clay","sand","gravel")))

plot.acomp(sa.groups,col=as.numeric(sa.groups.area),pch=20)
pairs(sa.lognormals,col=as.numeric(sa.groups.area),pch=20)

sa.groups.dil <- dilution(sa.groups)
plot.acomp(sa.groups.dil,col=as.numeric(sa.groups.area),pch=20)
pairs(sa.groups.dil,col=as.numeric(sa.groups.area),pch=20)

sa.groups.mix <- seqmix(sa.groups.dil)
plot.acomp(sa.groups.mix,col=as.numeric(sa.groups.area),pch=20)
pairs(sa.groups.mix,col=as.numeric(sa.groups.area),pch=20)



sa.groups5.area <- factor(rep(c("Upper","Middle","Lower"),each=20))
sa.groups5 <- structure(exp(matrix(rnorm(5*20*3),ncol=5) %*%
                               chol(matrix(c(1,0.8,-0.2,0,0,
                                             0.8,1,-0.2,0,0,
                                             -0.2,-0.2,1,0,0,
                                             0,0,0,5,4.9,
                                             0,0,0,4.9,5),ncol=5))+
                               matrix(rep(c(1,2,2.5,
                                            2,2.9,5,
                                            4,2.5,0,
                                            -2,-1,-1,
                                            -1,-2,-3),
                                          each=20),ncol=5)),
                           dimnames=list(NULL,
                             vars5))

plot.acomp(sa.groups5,col=as.numeric(sa.groups5.area),pch=20)
pairs(sa.groups5,col=as.numeric(sa.groups5.area),pch=20)

sa.groups5.dil <- dilution(sa.groups5)
plot.acomp(sa.groups5.dil,col=as.numeric(sa.groups5.area),pch=20)
pairs(sa.groups5.dil,col=as.numeric(sa.groups5.area),pch=20)

sa.groups5.mix <- seqmix(sa.groups5.dil)
plot.acomp(sa.groups5.mix,col=as.numeric(sa.groups5.area),pch=20)
pairs(sa.groups5.mix,col=as.numeric(sa.groups5.area),pch=20)



sa.tnormals <- structure(pmax(matrix(rnorm(3*60),ncol=3) %*%
                               chol(matrix(c(1,0.8,-0.2,0.8,1,
                                             -0.2,-0.2,-0.2,1),ncol=3))+
                               matrix(rep(c(0:2),each=60),ncol=3),0),
                           dimnames=list(NULL,c("clay","sand","gravel")))

plot.rcomp(sa.tnormals)
pairs(sa.tnormals)

sa.tnormals.dil <- dilution(sa.tnormals)
plot.acomp(sa.tnormals.dil)
pairs(sa.tnormals.dil)

sa.tnormals.mix <- seqmix(sa.tnormals.dil)
plot.acomp(sa.tnormals.mix)
pairs(sa.tnormals.mix)



sa.tnormals5 <- structure(pmax(matrix(rnorm(5*60),ncol=5) %*%
                               chol(matrix(c(1,0.8,-0.2,0,0,
                                             0.8,1,-0.2,0,0,
                                             -0.2,-0.2,1,0,0,
                                             0,0,0,0.05,0.049,
                                             0,0,0,0.049,0.05),ncol=5))+
                               matrix(rep(c(0:2,0.1,0.1),each=60),ncol=5),0),
                           dimnames=list(NULL,
                             vars5))

plot.rcomp(sa.tnormals5)
pairs(sa.tnormals5)

sa.tnormals5.dil <- dilution(sa.tnormals5)
plot.acomp(sa.tnormals5.dil)
pairs(sa.tnormals5.dil)

sa.tnormals5.mix <- seqmix(sa.tnormals5.dil)
plot.acomp(sa.tnormals5.mix)
pairs(sa.tnormals5.mix)



sa.dirichlet <- sapply(c(clay=0.2,sand=2,gravel=3),rgamma,n=60)
colnames(sa.dirichlet) <- vars

plot.acomp(sa.dirichlet)
pairs(sa.dirichlet)

sa.dirichlet.dil <- dilution(sa.dirichlet)
plot.acomp(sa.dirichlet.dil)
pairs(sa.dirichlet.dil)

sa.dirichlet.mix <- seqmix(sa.dirichlet.dil)
plot.acomp(sa.dirichlet.mix)
pairs(sa.dirichlet.mix)



sa.dirichlet5 <- sapply(c(clay=0.2,sand=2,gravel=3,humus=0.1,plant=0.1),rgamma,n=60)
colnames(sa.dirichlet5) <- vars5

plot.acomp(sa.dirichlet5)
pairs(sa.dirichlet5)

sa.dirichlet5.dil <- dilution(sa.dirichlet5)
plot.acomp(sa.dirichlet5.dil)
pairs(sa.dirichlet5.dil)

sa.dirichlet5.mix <- seqmix(sa.dirichlet5.dil)
plot.acomp(sa.dirichlet5.mix)
pairs(sa.dirichlet5.mix)


sa.uniform   <- sapply(c(clay=1,sand=1,gravel=1),rgamma,n=60)
colnames(sa.uniform) <- vars

plot.acomp(sa.uniform)
pairs(sa.uniform)

sa.uniform.dil <- dilution(sa.uniform)
plot.acomp(sa.uniform.dil)
pairs(sa.uniform.dil)

sa.uniform.mix <- seqmix(sa.uniform.dil)
plot.acomp(sa.uniform.mix)
pairs(sa.uniform.mix)



sa.uniform5   <- sapply(c(clay=1,sand=1,gravel=1,humus=1,plant=1),rgamma,n=60)
colnames(sa.uniform5) <- vars5

plot.acomp(sa.uniform5)
pairs(sa.uniform5)

sa.uniform5.dil <- dilution(sa.uniform5)
plot.acomp(sa.uniform5.dil)
pairs(sa.uniform5.dil)

sa.uniform5.mix <- seqmix(sa.uniform5.dil)
plot.acomp(sa.uniform5.mix)
pairs(sa.uniform5.mix)

tmp<-set.seed(1400)
A <- matrix(c(0.1,0.2,0.3,0.1),nrow=2)
Mvar <- 0.1*ilrvar2clr(A %*% t(A))
Mcenter <- acomp(c(1,2,1))
typicalData <- rnorm.acomp(100,Mcenter,Mvar) # main population
colnames(typicalData)<-c("A","B","C")
# A dataset without outliers
sa.outliers1 <- acomp(rnorm.acomp(100,Mcenter,Mvar))
# A dataset with 10% data with a large error in the first component
sa.outliers2 <- acomp(rbind(typicalData+rbinom(100,1,p=0.1)*rnorm(100)*acomp(c(4,1,1))))
# A dataset with a single outlier
sa.outliers3 <- acomp(rbind(typicalData,acomp(c(0.5,1.5,2))))
colnames(sa.outliers3)<-colnames(typicalData)
tmp<-set.seed(30)
rcauchy.acomp <- function (n, mean, var){
  D <- gsi.getD(mean)-1
  perturbe(ilrInv(matrix(rnorm(n*D)/rep(rnorm(n),D), ncol = D) %*% chol(clrvar2ilr(var))), mean)
}
# A dataset with a Cauchy type distribution
sa.outliers4 <- acomp(rcauchy.acomp(100,acomp(c(1,2,1)),Mvar/4))
colnames(sa.outliers4)<-colnames(typicalData)
# A dataset with like sa.outlier2 but a differently strong distortions
sa.outliers5 <- acomp(rbind(unclass(typicalData)+outer(rbinom(100,1,p=0.1)*runif(100),c(0.1,1,2))))
# A dataset with a second population
sa.outliers6 <- acomp(rbind(typicalData,rnorm.acomp(20,acomp(c(4,4,1)),Mvar)))

# Missings
sa.missings <- simulateMissings(sa.lognormals,dl=0.05,MAR=0.05,MNAR=0.05,SZ=0.05)
sa.missings[5,2]<-BDLvalue

sa.missings5 <- simulateMissings(sa.lognormals5,dl=0.05,MAR=0.05,MNAR=0.05,SZ=0.05)
sa.missings5[5,2]<-BDLvalue


objects(pattern="sa.*")
 

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.