Description Usage Arguments Value See Also Examples
Takes an object returned by clmm
using multpile phenotypes and returns a matrix
of predicted values from every model. Every column represents the prediction vector of one model
1 | get_pred(mod)
|
mod |
List returned by |
Matrix of prediction vectors in columns
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | ### Running a 4-fold cross-validation with one repetition:
## Not run:
# generate random data
rand_data(500,5000)
### compute the list of masked phenotype-vectors for CV
y_CV <- cCV(y,fold=4,reps=1)
### Cross Validation using GBLUP
G.A <- cgrm.A(M,lambda=0.01)
### generate the list of design matrices for clmm
Z_list = list(t(chol(G.A)))
### specify options
h2 = 0.3
scale = unlist(lapply(y_CV,function(x)var(x,na.rm=T))) * h2
df = rep(5,length(y_CV))
par_random = list(list(method="ridge",scale=scale,df=df))
### run
fit <- clmm(y_CV, Z=Z_list, par_random=par_random, niter=5000, burnin=2500)
### inspect results
str(fit)
### obtain predictions
pred <- get_pred(fit)
### prediction accuracy
get_cor(pred,y_CV,y)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.