DualResponsesSamplesDesign-class | R Documentation |
LogisticIndepBeta
model
model and efficacy responses using ModelEff
model class
with DLE and efficacy samples.It contain all slots in
RuleDesign
and TDsamplesDesign
class objectThis is a class of design based on DLE responses using the LogisticIndepBeta
model
model and efficacy responses using ModelEff
model class
with DLE and efficacy samples.It contain all slots in
RuleDesign
and TDsamplesDesign
class object
data
the data set of DataDual
class object
Effmodel
the pseudo efficacy model to be used, an object class of
ModelEff
##Construct the DualResponsesSamplesDesign for simulations
##The design comprises the DLE and efficacy models, the escalation rule, starting data,
##a cohort size and a starting dose
##Define your data set first using an empty data set
## with dose levels from 25 to 300 with increments 25
data <- DataDual(doseGrid=seq(25,300,25),placebo=FALSE)
## First for the DLE model and DLE samples
## The DLE model must be of 'ModelTox'
## (e.g 'LogisticIndepBeta') class and
## DLEsamples of 'Samples' class
options<-McmcOptions(burnin=100,step=2,samples=200)
DLEmodel <- LogisticIndepBeta(binDLE=c(1.05,1.8),DLEweights=c(3,3),
DLEdose=c(25,300),data=data)
DLEsamples<-mcmc(data,DLEmodel,options)
##The efficacy model of 'ModelEff' (e.g 'Effloglog') class and the efficacy samples
Effmodel<-Effloglog(Eff=c(1.223,2.513),Effdose=c(25,300),nu=c(a=1,b=0.025),data=data,c=0)
Effsamples<-mcmc(data,Effmodel,options)
##The escalation rule using the 'NextBestMaxGainSamples' class
mynextbest<-NextBestMaxGainSamples(DLEDuringTrialtarget=0.35,
DLEEndOfTrialtarget=0.3,
TDderive=function(TDsamples){
quantile(TDsamples,prob=0.3)},
Gstarderive=function(Gstarsamples){
quantile(Gstarsamples,prob=0.5)})
##The increments (see Increments class examples)
## 200% allowable increase for dose below 300 and 200% increase for dose above 300
myIncrements<-IncrementsRelative(intervals=c(25,300),
increments=c(2,2))
##cohort size of 3
mySize<-CohortSizeConst(size=3)
##Stop only when 36 subjects are treated
myStopping <- StoppingMinPatients(nPatients=36)
##Now specified the design with all the above information and starting with a dose of 25
design <- DualResponsesSamplesDesign(nextBest=mynextbest,
cohortSize=mySize,
startingDose=25,
model=DLEmodel,
Effmodel=Effmodel,
data=data,
stopping=myStopping,
increments=myIncrements)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.