View source: R/fromQuantiles.R
Quantiles2LogisticNormal | R Documentation |
This function uses generalised simulated annealing to optimise
a LogisticNormal
model to be as close as possible
to the given prior quantiles.
Quantiles2LogisticNormal(
dosegrid,
refDose,
lower,
median,
upper,
level = 0.95,
logNormal = FALSE,
parstart = NULL,
parlower = c(-10, -10, 0, 0, -0.95),
parupper = c(10, 10, 10, 10, 0.95),
seed = 12345,
verbose = TRUE,
control = list(threshold.stop = 0.01, maxit = 50000, temperature = 50000, max.time =
600)
)
dosegrid |
the dose grid |
refDose |
the reference dose |
lower |
the lower quantiles |
median |
the medians |
upper |
the upper quantiles |
level |
the credible level of the (lower, upper) intervals (default: 0.95) |
logNormal |
use the log-normal prior? (not default) otherwise, the normal prior for the logistic regression coefficients is used |
parstart |
starting values for the parameters. By default, these are determined from the medians supplied. |
parlower |
lower bounds on the parameters (intercept alpha and the slope beta, the corresponding standard deviations and the correlation.) |
parupper |
upper bounds on the parameters |
seed |
seed for random number generation |
verbose |
be verbose? (default) |
control |
additional options for the optimisation routine, see
|
a list with the best approximating model
(LogisticNormal
or
LogisticLogNormal
), the resulting quantiles
, the
required
quantiles and the distance
to the required quantiles,
as well as the final parameters
(which could be used for running the
algorithm a second time)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.