| fitGain | R Documentation |
Get the fitted values for the gain values at all dose levels based on a given pseudo DLE model, DLE sample, a pseudo efficacy model, a Efficacy sample and data. This method returns a data frame with dose, middle, lower and upper quantiles of the gain value samples
fitGain(DLEmodel, DLEsamples, Effmodel, Effsamples, data, ...)
## S4 method for signature 'ModelTox,Samples,ModelEff,Samples,DataDual'
fitGain(
DLEmodel,
DLEsamples,
Effmodel,
Effsamples,
data,
points = data@doseGrid,
quantiles = c(0.025, 0.975),
middle = mean,
...
)
DLEmodel |
the DLE pseudo model of |
DLEsamples |
the DLE samples of |
Effmodel |
the efficacy pseudo model of |
Effsamples |
the efficacy samples of |
data |
the data input of |
... |
additional arguments for methods |
points |
at which dose levels is the fit requested? default is the dose grid |
quantiles |
the quantiles to be calculated (default: 0.025 and 0.975) |
middle |
the function for computing the middle point. Default:
|
fitGain(
DLEmodel = ModelTox,
DLEsamples = Samples,
Effmodel = ModelEff,
Effsamples = Samples,
data = DataDual
): This method returns a data frame with dose, middle, lower, upper quantiles for
the gain values obtained given the DLE and the efficacy samples
##Obtain the 'fitGain' the middle, uppper and lower quantiles for the samples of gain values
## at all dose levels using a pseudo DLE model, a DLE sample, a pseudo Efficacy model and
## a efficacy sample
## data must be from 'DataDual' class
data <- DataDual(
x = c(25, 50, 25, 50, 75, 300, 250, 150),
y = c(0, 0, 0, 0, 0, 1, 1, 0),
w = c(0.31, 0.42, 0.59, 0.45, 0.6, 0.7, 0.6, 0.52),
doseGrid = seq(25, 300, 25),
placebo = FALSE
)
## DLE model must be from 'ModelTox' class e.g using 'LogisticIndepBeta' model
DLEmodel <- LogisticIndepBeta(
binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = data
)
## Efficacy model must be from 'ModelEff' class e.g using 'Effloglog' model
Effmodel <- Effloglog(
c(1.223, 2.513),
c(25, 300),
nu = c(a = 1, b = 0.025),
data = data,
c = 0
)
## samples must be from 'Samples' class (object slot in fit)
options <- McmcOptions(burnin = 100, step = 2, samples = 200)
##set up the same data set in class 'Data' for MCMC sampling for DLE
data1 <- Data(x = data@x, y = data@y, doseGrid = data@doseGrid)
DLEsamples <- mcmc(data = data1, model = DLEmodel, options = options)
Effsamples <- mcmc(data = data, model = Effmodel, options = options)
fitGain(
DLEmodel = DLEmodel,
DLEsamples = DLEsamples,
Effmodel = Effmodel,
Effsamples = Effsamples,
data = data
)
##Obtain the 'fitGain' the middle, uppper and lower quantiles for the samples of gain values
## at all dose levels using a pseudo DLE model, a DLE sample, a pseudo Efficacy model and
## a efficacy sample
## data must be from 'DataDual' class
data <- DataDual(
x = c(25, 50, 25, 50, 75, 300, 250, 150),
y = c(0, 0, 0, 0, 0, 1, 1, 0),
w = c(0.31, 0.42, 0.59, 0.45, 0.6, 0.7, 0.6, 0.52),
doseGrid = seq(25, 300, 25),
placebo = FALSE
)
## DLE model must be from 'ModelTox' class e.g using 'LogisticIndepBeta' model
DLEmodel <- LogisticIndepBeta(
binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = data
)
## Efficacy model must be from 'ModelEff' class e.g using 'Effloglog' model
Effmodel <- Effloglog(
c(1.223, 2.513),
c(25, 300),
nu = c(a = 1, b = 0.025),
data = data,
c = 0
)
## samples must be from 'Samples' class (object slot in fit)
options <- McmcOptions(burnin = 100, step = 2, samples = 200)
##set up the same data set in class 'Data' for MCMC sampling for DLE
data1 <- Data(x = data@x, y = data@y, doseGrid = data@doseGrid)
DLEsamples <- mcmc(data = data1, model = DLEmodel, options = options)
Effsamples <- mcmc(data = data, model = Effmodel, options = options)
fitGain(
DLEmodel = DLEmodel,
DLEsamples = DLEsamples,
Effmodel = Effmodel,
Effsamples = Effsamples,
data = data
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.