plot,PseudoDualFlexiSimulations,missing-method | R Documentation |
This plot method can be applied to PseudoDualFlexiSimulations
objects in order to summarize them graphically. Possible type
s of
plots at the moment are:
Summary of the trajectory of the simulated trials
Average proportions of the doses tested in patients
The variance of the efficacy responses
The variance of the random walk model
You can specify one or both of these in the
type
argument.
## S4 method for signature 'PseudoDualFlexiSimulations,missing'
plot(x, y, type = c("trajectory", "dosesTried", "sigma2", "sigma2betaW"), ...)
x |
the |
y |
missing |
type |
the type of plots you want to obtain. |
... |
not used |
A single ggplot
object if a single plot is
asked for, otherwise a gtable
object.
##obtain the plot for the simulation results
##If DLE and efficacy responses are considered in the simulations
data <- DataDual(doseGrid=seq(25,300,25))
##First for the DLE model
##The DLE model must be of 'ModelTox' (e.g 'LogisticIndepBeta') class
DLEmodel <- LogisticIndepBeta(binDLE=c(1.05,1.8),
DLEweights=c(3,3),
DLEdose=c(25,300),
data=data)
##The efficacy model must be of 'EffFlexi' class
Effmodel<- EffFlexi(Eff=c(1.223, 2.513),Effdose=c(25,300),
sigma2=c(a=0.1,b=0.1),sigma2betaW=c(a=20,b=50),smooth="RW2",data=data)
##The escalation rule using the 'NextBestMaxGainSamples' class
mynextbest<-NextBestMaxGainSamples(DLEDuringTrialtarget=0.35,
DLEEndOfTrialtarget=0.3,
TDderive=function(TDsamples){
quantile(TDsamples,prob=0.3)},
Gstarderive=function(Gstarsamples){
quantile(Gstarsamples,prob=0.5)})
## The cohort size, size of 3 subjects
mySize <-CohortSizeConst(size=3)
##Deifne the increments for the dose-escalation process
##The maximum increase of 200% for doses up to the maximum of the dose specified in the doseGrid
##The maximum increase of 200% for dose above the maximum of the dose specified in the doseGrid
##This is to specified a maximum of 3-fold restriction in dose-esclation
myIncrements<-IncrementsRelative(intervals=c(min(data@doseGrid),max(data@doseGrid)),
increments=c(2,2))
##Specified the stopping rule e.g stop when the maximum sample size of 36 patients has been reached
myStopping <- StoppingMinPatients(nPatients=36)
##Specified the design
design <- DualResponsesSamplesDesign(nextBest=mynextbest,
cohortSize=mySize,
startingDose=25,
model=DLEmodel,
Effmodel=Effmodel,
data=data,
stopping=myStopping,
increments=myIncrements)
##specified the true DLE curve and the true expected efficacy values at all dose levels
myTruthDLE<- function(dose)
{ DLEmodel@prob(dose, phi1=-53.66584, phi2=10.50499)
}
myTruthEff<- c(-0.5478867, 0.1645417, 0.5248031, 0.7604467,
0.9333009 ,1.0687031, 1.1793942 , 1.2726408 ,
1.3529598 , 1.4233411 , 1.4858613 , 1.5420182)
##The true gain curve can also be seen
myTruthGain <- function(dose)
{return((myTruthEff(dose))/(1+(myTruthDLE(dose)/(1-myTruthDLE(dose)))))}
##options for MCMC
options<-McmcOptions(burnin=10,step=1,samples=20)
##The simulations
##For illustration purpose only 1 simulation is produced (nsim=1).
mySim<-simulate(object=design,
args=NULL,
trueDLE=myTruthDLE,
trueEff=myTruthEff,
trueSigma2=0.025,
trueSigma2betaW=1,
mcmcOptions=options,
nsim=1,
seed=819,
parallel=FALSE)
##plot this simulated results
print(plot(mySim))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.