plot,PseudoDualSimulations,missing-method | R Documentation |
Summarize the simulations with plots
## S4 method for signature 'PseudoDualSimulations,missing'
plot(x, y, type = c("trajectory", "dosesTried", "sigma2"), ...)
x |
the |
y |
missing |
type |
the type of plots you want to obtain. |
... |
not used |
This plot method can be applied to PseudoDualSimulations
objects in order to summarize them graphically. Possible type
s of
plots at the moment are:
Summary of the trajectory of the simulated trials
Average proportions of the doses tested in patients
The variance of the efficacy responses
You can specify one or both of these in the
type
argument.
A single ggplot
object if a single plot is
asked for, otherwise a gtable
object.
##obtain the plot for the simulation results
##If DLE and efficacy responses are considered in the simulations
##Specified your simulations when no samples are used
## we need a data object with doses >= 1:
data <- DataDual(doseGrid=seq(25,300,25),placebo=FALSE)
##First for the DLE model
##The DLE model must be of 'ModelTox' (e.g 'LogisticIndepBeta') class
DLEmodel <- LogisticIndepBeta(binDLE=c(1.05,1.8),
DLEweights=c(3,3),
DLEdose=c(25,300),
data=data)
##The efficacy model of 'ModelEff' (e.g 'Effloglog') class
Effmodel<-Effloglog(Eff=c(1.223,2.513),Effdose=c(25,300),
nu=c(a=1,b=0.025),data=data,c=0)
##The escalation rule using the 'NextBestMaxGain' class
mynextbest<-NextBestMaxGain(DLEDuringTrialtarget=0.35,
DLEEndOfTrialtarget=0.3)
##The increments (see Increments class examples)
## 200% allowable increase for dose below 300 and 200% increase for dose above 300
myIncrements<-IncrementsRelative(intervals=c(25,300),
increments=c(2,2))
##cohort size of 3
mySize<-CohortSizeConst(size=3)
##Stop only when 36 subjects are treated
myStopping <- StoppingMinPatients(nPatients=36)
##Now specified the design with all the above information and starting with a dose of 25
##Specified the design(for details please refer to the 'DualResponsesDesign' example)
design <- DualResponsesDesign(nextBest=mynextbest,
model=DLEmodel,
Effmodel=Effmodel,
stopping=myStopping,
increments=myIncrements,
cohortSize=mySize,
data=data,startingDose=25)
##Specify the true DLE and efficacy curves
myTruthDLE<- function(dose)
{ DLEmodel@prob(dose, phi1=-53.66584, phi2=10.50499)
}
myTruthEff<- function(dose)
{Effmodel@ExpEff(dose,theta1=-4.818429,theta2=3.653058)
}
## Then specified the simulations and generate the trial
##For illustration purpose only 1 simulation is produced (nsim=1).
mySim <-simulate(object=design,
args=NULL,
trueDLE=myTruthDLE,
trueEff=myTruthEff,
trueNu=1/0.025,
nsim=1,
seed=819,
parallel=FALSE)
##plot the simulation results
print(plot(mySim))
##If DLE and efficacy samples are involved
##The escalation rule using the 'NextBestMaxGainSamples' class
mynextbest<-NextBestMaxGainSamples(DLEDuringTrialtarget=0.35,
DLEEndOfTrialtarget=0.3,
TDderive=function(TDsamples){
quantile(TDsamples,prob=0.3)},
Gstarderive=function(Gstarsamples){
quantile(Gstarsamples,prob=0.5)})
##The design of 'DualResponsesSamplesDesign' class
design <- DualResponsesSamplesDesign(nextBest=mynextbest,
cohortSize=mySize,
startingDose=25,
model=DLEmodel,
Effmodel=Effmodel,
data=data,
stopping=myStopping,
increments=myIncrements)
##options for MCMC
options<-McmcOptions(burnin=10,step=1,samples=20)
##The simulations
##For illustration purpose only 1 simulation is produced (nsim=1).
mySim<-simulate(design,
args=NULL,
trueDLE=myTruthDLE,
trueEff=myTruthEff,
trueNu=1/0.025,
nsim=1,
mcmcOptions=options,
seed=819,
parallel=FALSE)
##plot the simulation results
print(plot(mySim))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.