plotDualResponses | R Documentation |
Plot of the DLE and efficacy curve side by side given a DLE pseudo model, a DLE sample, an efficacy pseudo model and a given efficacy sample
Plot of the dose-DLE and dose-efficacy curve side by side given a DLE pseudo model and a given pseudo efficacy model without DLE and efficacy samples
plotDualResponses(DLEmodel, DLEsamples, Effmodel, Effsamples, data, ...)
## S4 method for signature 'ModelTox,Samples,ModelEff,Samples'
plotDualResponses(
DLEmodel,
DLEsamples,
Effmodel,
Effsamples,
data,
extrapolate = TRUE,
showLegend = FALSE,
...
)
## S4 method for signature 'ModelTox,missing,ModelEff,missing'
plotDualResponses(DLEmodel, DLEsamples, Effmodel, Effsamples, data, ...)
DLEmodel |
the pseudo DLE model of |
DLEsamples |
the DLE samples of |
Effmodel |
the pseudo efficacy model of |
Effsamples |
the Efficacy samples of |
data |
the data input of |
... |
additional arguments for the parent method
|
extrapolate |
should the biomarker fit be extrapolated to the whole dose grid? (default) |
showLegend |
should the legend be shown? (not default) |
This returns the ggplot
object with the dose-toxicity and dose-efficacy model fits
plotDualResponses(
DLEmodel = ModelTox,
DLEsamples = Samples,
Effmodel = ModelEff,
Effsamples = Samples
)
: function todo
plotDualResponses(
DLEmodel = ModelTox,
DLEsamples = missing,
Effmodel = ModelEff,
Effsamples = missing
)
: Plot the DLE and efficacy curve side by side given a DLE model
and an efficacy model without any samples
## we need a data object with doses >= 1:
data <-DataDual(x=c(25,50,25,50,75,300,250,150),
y=c(0,0,0,0,0,1,1,0),
w=c(0.31,0.42,0.59,0.45,0.6,0.7,0.6,0.52),
doseGrid=seq(25,300,25),
placebo=FALSE)
##plot the dose-DLE and dose-efficacy curves in two plots with DLE and efficacy samples
##define the DLE model which must be of 'ModelTox' class
##(e.g 'LogisticIndepBeta' class model)
DLEmodel<-LogisticIndepBeta(binDLE=c(1.05,1.8),DLEweights=c(3,3),DLEdose=c(25,300),data=data)
## define the efficacy model which must be of 'ModelEff' class
## (e.g 'Effloglog' class)
Effmodel<-Effloglog(Eff=c(1.223,2.513),Effdose=c(25,300),nu=c(a=1,b=0.025),data=data,c=0)
##define the DLE sample of 'Samples' class
##set up the same data set in class 'Data' for MCMC sampling for DLE
data1 <- Data(x=data@x,y=data@y,doseGrid=data@doseGrid)
##Specify the options for MCMC
options <- McmcOptions(burnin=100,step=2,samples=1000)
DLEsamples <- mcmc(data=data1,model=DLEmodel,options=options)
##define the efficacy sample of 'Samples' class
Effsamples <- mcmc(data=data,model=Effmodel,options=options)
##plot the dose-DLE and dose-efficacy curves with two plot side by side.
##For each curve the 95% credibility interval of the two samples are alos given
plotDualResponses(DLEmodel=DLEmodel,DLEsamples=DLEsamples,
Effmodel=Effmodel,Effsamples=Effsamples,
data=data)
## we need a data object with doses >= 1:
data <-DataDual(x=c(25,50,25,50,75,300,250,150),
y=c(0,0,0,0,0,1,1,0),
w=c(0.31,0.42,0.59,0.45,0.6,0.7,0.6,0.52),
doseGrid=seq(25,300,25),
placebo=FALSE)
##plot the dose-DLE and dose-efficacy curves in two plots without DLE and efficacy samples
##define the DLE model which must be of 'ModelTox' class
##(e.g 'LogisticIndepBeta' class model)
DLEmodel<-LogisticIndepBeta(binDLE=c(1.05,1.8),DLEweights=c(3,3),DLEdose=c(25,300),data=data)
## define the efficacy model which must be of 'ModelEff' class
## (e.g 'Effloglog' class)
Effmodel<-Effloglog(Eff=c(1.223,2.513),Effdose=c(25,300),nu=c(a=1,b=0.025),data=data,c=0)
##plot the dose-DLE and dose-efficacy curves with two plot side by side.
plotDualResponses(DLEmodel=DLEmodel,
Effmodel=Effmodel,
data=data)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.