size | R Documentation |
This function determines the size of the next cohort.
size(cohortSize, dose, data, ...)
## S4 method for signature 'CohortSizeRange,ANY,Data'
size(cohortSize, dose, data, ...)
## S4 method for signature 'CohortSizeDLT,ANY,Data'
size(cohortSize, dose, data, ...)
## S4 method for signature 'CohortSizeMax,ANY,Data'
size(cohortSize, dose, data, ...)
## S4 method for signature 'CohortSizeMin,ANY,Data'
size(cohortSize, dose, data, ...)
## S4 method for signature 'CohortSizeConst,ANY,Data'
size(cohortSize, dose, data, ...)
## S4 method for signature 'CohortSizeParts,ANY,DataParts'
size(cohortSize, dose, data, ...)
cohortSize |
The rule, an object of class
|
dose |
the next dose |
data |
The data input, an object of class |
... |
additional arguments |
the size as integer value
size(cohortSize = CohortSizeRange, dose = ANY, data = Data)
: Determine the cohort size based on the range into which the
next dose falls into
size(cohortSize = CohortSizeDLT, dose = ANY, data = Data)
: Determine the cohort size based on the number of DLTs so
far
size(cohortSize = CohortSizeMax, dose = ANY, data = Data)
: Size based on maximum of multiple cohort size rules
size(cohortSize = CohortSizeMin, dose = ANY, data = Data)
: Size based on minimum of multiple cohort size rules
size(cohortSize = CohortSizeConst, dose = ANY, data = Data)
: Constant cohort size
size(cohortSize = CohortSizeParts, dose = ANY, data = DataParts)
: Cohort size based on the parts
# Create the data
data <- Data(x=c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y=c(0, 0, 0, 0, 0, 0, 1, 0),
cohort=c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid=
c(0.1, 0.5, 1.5, 3, 6,
seq(from=10, to=80, by=2)))
# Initialize the CRM model used to model the data
model <- LogisticLogNormal(mean=c(-0.85, 1),
cov=
matrix(c(1, -0.5, -0.5, 1),
nrow=2),
refDose=56)
# Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin=100,
step=2,
samples=2000)
set.seed(94)
samples <- mcmc(data, model, options)
# Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(intervals=c(0, 20),
increments=c(1, 0.33))
nextMaxDose <- maxDose(myIncrements,
data=data)
# Define the rule which will be used to select the next best dose
# based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(target=c(0.2, 0.35),
overdose=c(0.35, 1),
maxOverdoseProb=0.25)
# Calculate the next best dose
doseRecommendation <- nextBest(myNextBest,
doselimit=nextMaxDose,
samples=samples, model=model, data=data)
# Rule for the cohort size:
# - having cohort of size 1 for doses <10
# - and having cohort of size 3 for doses >=10
mySize <- CohortSizeRange(intervals=c(0, 10),
cohortSize=c(1, 3))
# Determine the cohort size for the next cohort
size(mySize, dose=doseRecommendation$value, data = data)
# Create the data
data <- Data(x=c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y=c(0, 0, 0, 0, 0, 0, 1, 0),
cohort=c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid=
c(0.1, 0.5, 1.5, 3, 6,
seq(from=10, to=80, by=2)))
# Initialize the CRM model used to model the data
model <- LogisticLogNormal(mean=c(-0.85, 1),
cov=
matrix(c(1, -0.5, -0.5, 1),
nrow=2),
refDose=56)
# Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin=100,
step=2,
samples=2000)
set.seed(94)
samples <- mcmc(data, model, options)
# Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(intervals=c(0, 20),
increments=c(1, 0.33))
nextMaxDose <- maxDose(myIncrements,
data=data)
# Define the rule which will be used to select the next best dose
# based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(target=c(0.2, 0.35),
overdose=c(0.35, 1),
maxOverdoseProb=0.25)
# Calculate the next best dose
doseRecommendation <- nextBest(myNextBest,
doselimit=nextMaxDose,
samples=samples, model=model, data=data)
# Rule for the cohort size:
# - having cohort of size 1 if no DLTs were yet observed
# - and having cohort of size 3 if at least 1 DLT was already observed
mySize <- CohortSizeDLT(DLTintervals = c(0, 1),
cohortSize = c(1, 3))
# Determine the cohort size for the next cohort
size(mySize, dose=doseRecommendation$value, data = data)
# Create the data
data <- Data(x=c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y=c(0, 0, 0, 0, 0, 0, 1, 0),
cohort=c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid=
c(0.1, 0.5, 1.5, 3, 6,
seq(from=10, to=80, by=2)))
# Initialize the CRM model used to model the data
model <- LogisticLogNormal(mean=c(-0.85, 1),
cov=
matrix(c(1, -0.5, -0.5, 1),
nrow=2),
refDose=56)
# Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin=100,
step=2,
samples=2000)
set.seed(94)
samples <- mcmc(data, model, options)
# Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(intervals=c(0, 20),
increments=c(1, 0.33))
nextMaxDose <- maxDose(myIncrements,
data=data)
# Define the rule which will be used to select the next best dose
# based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(target=c(0.2, 0.35),
overdose=c(0.35, 1),
maxOverdoseProb=0.25)
# Calculate the next best dose
doseRecommendation <- nextBest(myNextBest,
doselimit=nextMaxDose,
samples=samples, model=model, data=data)
# Rule for having cohort of size 1 for doses <30
# and having cohort of size 3 for doses >=30
mySize1 <- CohortSizeRange(intervals = c(0, 10),
cohortSize = c(1, 3))
# Rule for having cohort of size 1 until no DLT were observed
# and having cohort of size 3 as soon as 1 DLT is observed
mySize2 <- CohortSizeDLT(DLTintervals=c(0, 1),
cohortSize=c(1, 3))
# Combining the two rules for cohort size by taking the maximum of the sample sizes
# of the single rules
mySize <- maxSize(mySize1, mySize2)
# Determine the cohort size for the next cohort
size(mySize, dose=doseRecommendation$value, data = data)
# Create the data
data <- Data(x=c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y=c(0, 0, 0, 0, 0, 0, 1, 0),
cohort=c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid=
c(0.1, 0.5, 1.5, 3, 6,
seq(from=10, to=80, by=2)))
# Initialize the CRM model used to model the data
model <- LogisticLogNormal(mean=c(-0.85, 1),
cov=
matrix(c(1, -0.5, -0.5, 1),
nrow=2),
refDose=56)
# Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin=100,
step=2,
samples=2000)
set.seed(94)
samples <- mcmc(data, model, options)
# Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(intervals=c(0, 20),
increments=c(1, 0.33))
nextMaxDose <- maxDose(myIncrements,
data=data)
# Define the rule which will be used to select the next best dose
# based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(target=c(0.2, 0.35),
overdose=c(0.35, 1),
maxOverdoseProb=0.25)
# Calculate the next best dose
doseRecommendation <- nextBest(myNextBest,
doselimit=nextMaxDose,
samples=samples, model=model, data=data)
# Rule for having cohort of size 1 for doses <30
# and having cohort of size 3 for doses >=30
mySize1 <- CohortSizeRange(intervals = c(0, 30),
cohortSize = c(1, 3))
# Rule for having cohort of size 1 until no DLT were observed
# and having cohort of size 3 as soon as 1 DLT is observed
mySize2 <- CohortSizeDLT(DLTintervals=c(0, 1),
cohortSize=c(1, 3))
# Combining the two rules for cohort size by taking the minimum of the sample sizes
# of the single rules
mySize <- minSize(mySize1, mySize2)
# Determine the cohort size for the next cohort
size(mySize, dose=doseRecommendation$value, data = data)
# Create the data
data <- Data(x=c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y=c(0, 0, 0, 0, 0, 0, 1, 0),
cohort=c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid=
c(0.1, 0.5, 1.5, 3, 6,
seq(from=10, to=80, by=2)))
# Initialize the CRM model used to model the data
model <- LogisticLogNormal(mean=c(-0.85, 1),
cov=
matrix(c(1, -0.5, -0.5, 1),
nrow=2),
refDose=56)
# Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin=100,
step=2,
samples=2000)
set.seed(94)
samples <- mcmc(data, model, options)
# Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(intervals=c(0, 20),
increments=c(1, 0.33))
nextMaxDose <- maxDose(myIncrements,
data=data)
# Define the rule which will be used to select the next best dose
# based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(target=c(0.2, 0.35),
overdose=c(0.35, 1),
maxOverdoseProb=0.25)
# Calculate the next best dose
doseRecommendation <- nextBest(myNextBest,
doselimit=nextMaxDose,
samples=samples, model=model, data=data)
# Rule for having cohorts with constant cohort size of 3
mySize <- CohortSizeConst(size=3)
# Determine the cohort size for the next cohort
size(mySize, dose=doseRecommendation$value, data = data)
# create an object of class 'DataParts'
data <- DataParts(x=c(0.1,0.5,1.5),
y=c(0,0,0),
doseGrid=c(0.1,0.5,1.5,3,6,
seq(from=10,to=80,by=2)),
part=c(1L,1L,1L),
nextPart=1L,
part1Ladder=c(0.1,0.5,1.5,3,6,10))
# Initialize the CRM model used to model the data
model <- LogisticLogNormal(mean=c(-0.85, 1),
cov=
matrix(c(1, -0.5, -0.5, 1),
nrow=2),
refDose=56)
# Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin=100,
step=2,
samples=2000)
set.seed(94)
samples <- mcmc(data, model, options)
myIncrements <- IncrementsRelativeParts(dltStart=0,
cleanStart=1)
nextMaxDose <- maxDose(myIncrements,
data=data)
# Define the rule which will be used to select the next best dose
# based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(target=c(0.2, 0.35),
overdose=c(0.35, 1),
maxOverdoseProb=0.25)
# Calculate the next best dose
doseRecommendation <- nextBest(myNextBest,
doselimit=nextMaxDose,
samples=samples,
model=model,
data=data)
# Rule for the cohort size:
mySize <- CohortSizeParts(sizes=c(1,3))
# Determine the cohort size for the next cohort
size(mySize, dose=doseRecommendation$value, data = data)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.