Nothing
###################### begin mph.summary ######################################
#
mph.summary <- function(mph.out,cell.stats=FALSE,model.info=FALSE,digits=4) {
#
# This function is used in conjunction with the ML fitting
# function 'mph.fit', versions 3.0 and higher.
#
# It computes and prints a collection of summary statistics of
# the fitted MPH model given in 'mph.out',
# which is the result of 'mph.fit'. That is,
# mph.out <- mph.fit(y,...)
#
# Author: Joseph B. Lang,
# Dept of Statistics
# and Actuarial Science
# Univ of Iowa, Iowa City, IA 52242
# 8/16/01
# Last Updated: 1/17/08, 4/30/09, 5/17/09
#
# INPUT
# Required:
# mph.out = result of `mph.fit'
#
# Optional:
# cell.stats = logical variable indicating whether cell
# specific statistics are to be output
# (default: cell.stats=F)
# model.info = logical variable indicating whether model
# information is to be output
# (default: model.info=F)
# digits = integer giving output precision;
# used in the round() function
#
#
a <- mph.out
if (a$h.mean==FALSE) {
cat("\nMODEL GOODNESS OF FIT: Test of Ho: h(p)=0 vs. Ha: not Ho...")
} else {cat("\nMODEL GOODNESS OF FIT: Test of Ho: h(m)=0 vs. Ha: not Ho...")}
cat("\n\n")
cat(" Likelihood Ratio Stat (df=",a$df,"): Gsq = ",
round(a$Gsq,5))
if (a$df > 0) cat(" (pval = ",signif(1-pchisq(a$Gsq,a$df),4),")")
cat("\n")
cat(" Pearson's Score Stat (df=",a$df,"): Xsq = ",
round(a$Xsq,5))
if (a$df > 0) cat(" (pval = ",signif(1-pchisq(a$Xsq,a$df),4),")")
cat("\n")
cat(" Generalized Wald Stat (df=",a$df,"): Wsq = ",
round(a$Wsq,5))
if (a$df > 0) cat(" (pval = ",signif(1-pchisq(a$Wsq,a$df),4),")")
cat("\n")
sm <- 100*length(a$m[a$m < 5])/length(a$m)
if ((sm > 75)&(a$df > 0)) {
cat("\n WARNING:", paste(sm,"%",sep=""),
"of expected counts are less than 5. \n")
cat(" Chi-square approximation may be questionable.\n")
}
cat("\n")
r <- sort(round(a$adjresid,3))
lr <- length(r); nbig <- sum(abs(r) > 2)
cat(" Adj Resids: ");
if (lr > 4) {cat(sep=" ",r[1],r[2],"...",r[lr-1],r[lr],", ")}
else {cat(sep=" ",r,", ")}
cat(sep=" ","Number |Adj Resid| > 2: ", nbig)
cat("\n")
cat("\nSAMPLING PLAN INFORMATION...\n")
cat("Number of strata: ",ncol(a$triple$Z),"\n")
cat("Strata identifiers: "); cat(sep=", ",names(table(a$strata))); cat("\n")
cat("Strata with fixed sample sizes: "); cat(sep=", ",a$fixed.strata);cat("\n")
cat("Observed strata sample sizes: "); cat(sep=", ",t(a$triple$Z)%*%a$y);
cat("\n")
if (a$L[1] != "NA") {
cat("\nLINEAR PREDICTOR MODEL RESULTS...")
cat("\n")
dcovbeta <- diag(a$covbeta); dcovbeta[dcovbeta < 0] <- 0; sbeta <- as.matrix(sqrt(dcovbeta))
z <- a$beta/sbeta
pval <- 2*(1-pnorm(abs(z)))
dimnames(sbeta)[2] <- "StdErr(BETA)"
dimnames(z)[2] <- "Z-ratio"
dimnames(pval)[2] <- "p-value"
print(cbind(round(a$beta,digits),round(sbeta,digits),round(z,digits),signif(pval,5)))
cat("\n")
dcovL <- diag(a$covL); dcovL[dcovL < 0] <- 0; stdL <- as.matrix(sqrt(dcovL))
dimnames(stdL)[2] <- "StdErr(L)"
print(cbind(round(a$Lobs,digits),round(a$L,digits),round(stdL,digits),round(a$Lresid,digits)))
}
if (cell.stats==TRUE) {
dcovm <- diag(a$covm); dcovm[dcovm < 0] <- 0; stdm <- as.matrix(sqrt(dcovm))
dcovp <- diag(a$covp); dcovp[dcovp < 0] <- 0; stdp <- as.matrix(sqrt(dcovp))
dimnames(stdm)[2] <- "StdErr.FV"
dimnames(stdp)[2] <- "StdErr.PROB"
a$strata <- as.matrix(a$strata)
dimnames(a$strata)[2] <- list("strata")
cat("\nCELL-SPECIFIC STATISTICS...")
cat("\n")
print(data.frame(a$strata,a$y,round(a$m,digits),round(stdm,digits),round(a$p,digits),round(stdp,digits),round(a$adjresid,digits)))
}
cat("\nCONVERGENCE INFORMATION...")
cat("\n")
cat(" ",a$warn.message,"\n")
# cat(" iterations =",a$iter, ", time elapsed =",a$time.elapsed)
cat("\n")
cat(" norm.diff =",signif(a$norm.diff,6), "= dist between last and second last iterates.\n")
cat(" ",a$warn.message.diff)
cat(" norm.score =",signif(a$norm.score,6), "= norm of score at last iteration.\n")
cat(" ",a$warn.message.score)
if (model.info==TRUE) {
cat("\nMODEL INFORMATION...")
cat("\n")
if (a$L[1] != "NA") {
cat("Linear Predictor Model Link Function L.fct (L.mean=", a$L.mean,"):\n")
print(a$L.fct)
cat("\n")
cat("Link information as originally input, L.input.fct:\n")
print(a$L.input.fct)
cat("\n")
cat("Derivative of Transpose Link Function derLt.fct: \n")
print(a$derLt.fct)
cat("\n")
cat("Linear Predictor Model Design Matrix X: \n")
print(a$X)
cat("\n")
cat("U = Orthogonal Complement of X: \n")
if (is.matrix(a$U)) print(a$U)
else cat("\n ",a$U,"\n")
}
cat("\n")
cat("Constraint Function h.fct (h.mean=", a$h.mean,"):\n")
print(a$h.fct)
cat("\n")
cat("Constraint information as originally input, h.input.fct:\n")
print(a$h.input.fct)
cat("\n")
cat("Derivative of Transpose Constraint Function derht.fct:\n")
print(a$derht.fct)
cat("\n")
cat("Population (Strata) Matrix Z: \n")
print(a$triple$Z)
cat("\n")
cat("Sampling Constraint Matrix ZF:\n")
print(a$triple$ZF)
cat("\n")
cat("Fixed Sample Sizes n:\n")
print(a$triple$n)
cat("\n")
cat("strata:\n")
print(a$strata)
cat("\n")
cat("fixed.strata:\n")
print(a$fixed.strata)
cat("\n")
}
cat("\n")
}
###################### end mph.summary ######################################
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.