Description Usage Arguments Details Value Author(s) References See Also Examples
Calculate the average translational selection per transcript include mSCU and SCU (if gene expression is provided) for each gene.
1 | calc_scu_values(b, y.list, phi.Obs = NULL)
|
b |
an object of format |
y.list |
an object of format |
phi.Obs |
an object of format |
This function computes SCU and mSCU for each gene. Typically, this method
is completely based on estimated parameters of mutation and selection
such as outputs of MCMC or fitMultinom()
.
A list with two named elements SCU
and mSCU
are returned.
Wei-Chen Chen wccsnow@gmail.com.
Wallace E.W.J., Airoldi E.M., and Drummond D.A. “Estimating Selection on Synonymous Codon Usage from Noisy Experimental Data” Mol Biol Evol (2013) 30(6):1438–1453.
calc_scuo_values()
,
calc_cai_values()
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | ## Not run:
library(cubfits, quietly = TRUE)
b <- b.Init$roc
phi.Obs <- ex.train$phi.Obs
y <- ex.train$y
y.list <- convert.y.to.list(y)
mSCU <- calc_scu_values(b, y.list, phi.Obs)$mSCU
plot(mSCU, log10(phi.Obs), main = "Expression vs mSCU",
xlab = "mSCU", ylab = "Expression (log10)")
### Compare with CAI with weights seqinr::cubtab$sc.
library(seqinr, quietly = TRUE)
w <- caitab$sc
names(w) <- codon.low2up(rownames(caitab))
CAI <- calc_cai_values(y, y.list, w = w)$CAI
plot(mSCU, CAI, main = "CAI vs mSCU",
xlab = "mSCU", ylab = "CAI")
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.