R/elastic_net.R

Defines functions cuda_ml_elastic_net_bridge cuda_ml_elastic_net.recipe cuda_ml_elastic_net.formula cuda_ml_elastic_net.matrix cuda_ml_elastic_net.data.frame cuda_ml_elastic_net.default cuda_ml_elastic_net elastic_net_validate_alpha

Documented in cuda_ml_elastic_net cuda_ml_elastic_net.data.frame cuda_ml_elastic_net.default cuda_ml_elastic_net.formula cuda_ml_elastic_net.matrix cuda_ml_elastic_net.recipe

elastic_net_validate_alpha <- function(alpha) {
  if (alpha <= 0) {
    stop("`alpha` (multiplier of the elastic penalty term) must be positive!")
  }
}

#' Train a linear model using elastic regression.
#'
#' Train a linear model with combined L1 and L2 priors as the regularizer.
#'
#' @template supervised-model-inputs
#' @template supervised-model-output
#' @template ellipsis-unused
#' @template fit-intercept
#' @template normalize-input
#' @template coordinate-descend
#' @template l1_ratio
#' @param alpha Multiplier of the penalty term (i.e., the result would become
#'   and Ordinary Least Square model if \code{alpha} were set to 0). Default: 1.
#'   For numerical reasons, running elastic regression with \code{alpha} set to
#'   0 is not advised. For the \code{alpha}-equals-to-0 scenario, one should use
#'   \code{cuda_ml_ols} to train an OLS model instead.
#'   Default: 1.
#'
#' @return An elastic net regressor that can be used with the 'predict' S3
#'   generic to make predictions on new data points.
#'
#' @examples
#'
#' library(cuda.ml)
#'
#' model <- cuda_ml_elastic_net(
#'   formula = mpg ~ ., data = mtcars, alpha = 1e-3, l1_ratio = 0.6
#' )
#' cuda_ml_predictions <- predict(model, mtcars)
#'
#' # predictions will be comparable to those from a `glmnet` model with `lambda`
#' # set to 1e-3 and `alpha` set to 0.6
#' # (in `glmnet`, `lambda` is the weight of the penalty term, and `alpha` is
#' #  the elastic mixing parameter between L1 and L2 penalties.
#'
#' library(glmnet)
#'
#' glmnet_model <- glmnet(
#'   x = as.matrix(mtcars[names(mtcars) != "mpg"]), y = mtcars$mpg,
#'   alpha = 0.6, lambda = 1e-3, nlambda = 1, standardize = FALSE
#' )
#'
#' glm_predictions <- predict(
#'   glmnet_model, as.matrix(mtcars[names(mtcars) != "mpg"]),
#'   s = 0
#' )
#'
#' print(
#'   all.equal(
#'     as.numeric(glm_predictions),
#'     cuda_ml_predictions$.pred,
#'     tolerance = 1e-2
#'   )
#' )
#' @importFrom ellipsis check_dots_used
#' @export
cuda_ml_elastic_net <- function(x, ...) {
  check_dots_used()
  UseMethod("cuda_ml_elastic_net")
}

#' @rdname cuda_ml_elastic_net
#' @export
cuda_ml_elastic_net.default <- function(x, ...) {
  report_undefined_fn("cuda_ml_elastic_net", x)
}

#' @rdname cuda_ml_elastic_net
#' @export
cuda_ml_elastic_net.data.frame <- function(x, y,
                                           alpha = 1, l1_ratio = 0.5,
                                           max_iter = 1000L, tol = 1e-3,
                                           fit_intercept = TRUE,
                                           normalize_input = FALSE,
                                           selection = c("cyclic", "random"),
                                           ...) {
  processed <- hardhat::mold(x, y)

  cuda_ml_elastic_net_bridge(
    processed = processed,
    alpha = alpha,
    l1_ratio = l1_ratio,
    max_iter = max_iter,
    tol = tol,
    fit_intercept = fit_intercept,
    normalize_input = normalize_input,
    selection = selection
  )
}

#' @rdname cuda_ml_elastic_net
#' @export
cuda_ml_elastic_net.matrix <- function(x, y,
                                       alpha = 1, l1_ratio = 0.5,
                                       max_iter = 1000L, tol = 1e-3,
                                       fit_intercept = TRUE,
                                       normalize_input = FALSE,
                                       selection = c("cyclic", "random"),
                                       ...) {
  processed <- hardhat::mold(x, y)

  cuda_ml_elastic_net_bridge(
    processed = processed,
    alpha = alpha,
    l1_ratio = l1_ratio,
    max_iter = max_iter,
    tol = tol,
    fit_intercept = fit_intercept,
    normalize_input = normalize_input,
    selection = selection
  )
}

#' @rdname cuda_ml_elastic_net
#' @export
cuda_ml_elastic_net.formula <- function(formula, data,
                                        alpha = 1, l1_ratio = 0.5,
                                        max_iter = 1000L, tol = 1e-3,
                                        fit_intercept = TRUE,
                                        normalize_input = FALSE,
                                        selection = c("cyclic", "random"),
                                        ...) {
  processed <- hardhat::mold(formula, data)

  cuda_ml_elastic_net_bridge(
    processed = processed,
    alpha = alpha,
    l1_ratio = l1_ratio,
    max_iter = max_iter,
    tol = tol,
    fit_intercept = fit_intercept,
    normalize_input = normalize_input,
    selection = selection
  )
}

#' @rdname cuda_ml_elastic_net
#' @export
cuda_ml_elastic_net.recipe <- function(x, data,
                                       alpha = 1, l1_ratio = 0.5,
                                       max_iter = 1000L, tol = 1e-3,
                                       fit_intercept = TRUE,
                                       normalize_input = FALSE,
                                       selection = c("cyclic", "random"),
                                       ...) {
  processed <- hardhat::mold(x, data)

  cuda_ml_elastic_net_bridge(
    processed = processed,
    alpha = alpha,
    l1_ratio = l1_ratio,
    max_iter = max_iter,
    tol = tol,
    fit_intercept = fit_intercept,
    normalize_input = normalize_input,
    selection = selection
  )
}

cuda_ml_elastic_net_bridge <- function(processed,
                                       alpha, l1_ratio,
                                       max_iter, tol,
                                       fit_intercept,
                                       normalize_input,
                                       selection = c("cyclic", "random")) {
  validate_lm_input(processed)
  elastic_net_validate_alpha(alpha)
  selection <- match.arg(selection)
  if (!fit_intercept && normalize_input) {
    stop(
      "fit_intercept=FALSE, normalize_input=TRUE is unsupported for elastic ",
      "net"
    )
  }

  x <- as.matrix(processed$predictors)
  y <- processed$outcomes[[1]]

  model_xptr <- .cd_fit(
    x = x,
    y = y,
    fit_intercept = fit_intercept,
    normalize_input = normalize_input,
    epochs = as.integer(max_iter),
    loss = 0L, # squared loss
    alpha = as.numeric(alpha),
    l1_ratio = as.numeric(l1_ratio),
    shuffle = identical(selection, "random"),
    tol = as.numeric(tol)
  )

  new_linear_model(
    cls = "cuda_ml_elastic_net",
    xptr = model_xptr,
    blueprint = processed$blueprint
  )
}

Try the cuda.ml package in your browser

Any scripts or data that you put into this service are public.

cuda.ml documentation built on Jan. 8, 2022, 9:06 a.m.