Nothing
# --------------------------------------
# Author: Andreas Alfons
# Erasmus Universiteit Rotterdam
# --------------------------------------
#' @method print cvFolds
#' @export
print.cvFolds <- function(x, ...) {
# print general information
if(x$n == x$K) {
cvText <- "Leave-one-out CV"
} else {
cvText <- sprintf("%d-fold CV", x$K)
if(x$R > 1) {
cvText <- paste("Repeated", cvText, "with", x$R, "replications")
}
}
cat(paste("\n", cvText, ":", sep=""))
# print information on folds (add space between folds and subsets)
subsets <- x$subsets
if(x$R == 1) {
cn <- if(is.null(x$grouping)) "Index" else "Group index"
nblanks <- 2
} else {
cn <- as.character(seq_len(x$R))
nblanks <- 3
}
nblanks <- max(nchar(as.character(subsets[, 1]))-nchar(cn[1]), 0) + nblanks
cn[1] <- paste(c(rep.int(" ", nblanks), cn[1]), collapse="")
dimnames(subsets) <- list(Fold=x$which, cn)
print(subsets, ...)
# return object invisibly
invisible(x)
}
#' @method print cv
#' @export
print.cv <- function(x, ...) {
# print cross-validation results
if(x$n == x$K) {
cvText <- "Leave-one-out CV results:\n"
} else cvText <- sprintf("%d-fold CV results:\n", x$K)
cat(cvText)
print(x$cv, ...)
# return object invisibly
invisible(x)
}
#' @method print summary.cv
#' @export
print.summary.cv <- print.cv
#' @method print cvSelect
#' @export
print.cvSelect <- function(x, best = TRUE, ...) {
# print cross-validation results
if(length(K <- unique(x$K)) == 1) {
if(x$n == K) {
cat("\nLeave-one-out CV results:\n")
} else cat(sprintf("\n%d-fold CV results:\n", K))
} else cat("\nCV results:\n")
print(x$cv, ...)
# print optimal model if requested
if(isTRUE(best)) {
cat("\nBest model:\n")
best <- x$best
bestFit <- x$cv[best, "Fit"]
if(is.factor(bestFit)) bestFit <- as.character(bestFit)
names(bestFit) <- names(best)
print(bestFit, ...)
}
# return object invisibly
invisible(x)
}
#' @method print summary.cvSelect
#' @export
print.summary.cvSelect <- print.cvSelect
#' @method print cvTuning
#' @export
print.cvTuning <- function(x, best = TRUE, ...) {
# print cross-validation results
if(x$n == x$K) {
cat("\nLeave-one-out CV results:\n")
} else cat(sprintf("\n%d-fold CV results:\n", x$K))
print(cbind(x$tuning, x$cv[, -1, drop=FALSE]), ...)
# print optimal value for tuning parameters if requested
if(isTRUE(best)) {
if(ncol(x$tuning) == 1) {
cat("\nOptimal tuning parameter:\n")
} else cat("\nOptimal tuning parameters:\n")
best <- x$best
optimalTuning <- x$tuning[best, , drop=FALSE]
rownames(optimalTuning) <- names(best)
print(optimalTuning, ...)
}
# return object invisibly
invisible(x)
}
#' @method print summary.cvTuning
#' @export
print.summary.cvTuning <- print.cvTuning
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.