| reg_knn | R Documentation |
KNN regression using FNN::knn.reg, predicting by averaging the targets of the k nearest neighbors.
reg_knn(attribute, k)
attribute |
attribute target to model building |
k |
number of k neighbors |
Non‑parametric approach suitable for local smoothing. Sensitive to feature scaling; consider normalization beforehand.
returns a knn regression object
Altman, N. (1992). An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression.
data(Boston)
model <- reg_knn("medv", k=3)
# preparing dataset for random sampling
sr <- sample_random()
sr <- train_test(sr, Boston)
train <- sr$train
test <- sr$test
model <- fit(model, train)
test_prediction <- predict(model, test)
test_predictand <- test[,"medv"]
test_eval <- evaluate(model, test_predictand, test_prediction)
test_eval$metrics
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.