| reg_svm | R Documentation |
Support Vector Regression (SVR) using e1071::svm.
reg_svm(attribute, epsilon = 0.1, cost = 10, kernel = "radial")
attribute |
attribute target to model building |
epsilon |
parameter that controls the width of the margin around the separating hyperplane |
cost |
parameter that controls the trade-off between having a wide margin and correctly classifying training data points |
kernel |
the type of kernel function to be used in the SVM algorithm (linear, radial, polynomial, sigmoid) |
SVR optimizes a margin with an epsilon‑insensitive loss around the regression function.
The cost controls regularization strength; epsilon sets the width of the insensitive tube; and
kernel defines the feature map (linear, radial, polynomial, sigmoid).
returns a SVM regression object
Drucker, H., Burges, C., Kaufman, L., Smola, A., Vapnik, V. (1997). Support Vector Regression Machines. Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support vector machines.
data(Boston)
model <- reg_svm("medv", epsilon=0.2,cost=40.000)
# preparing dataset for random sampling
sr <- sample_random()
sr <- train_test(sr, Boston)
train <- sr$train
test <- sr$test
model <- fit(model, train)
test_prediction <- predict(model, test)
test_predictand <- test[,"medv"]
test_eval <- evaluate(model, test_predictand, test_prediction)
test_eval$metrics
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.