reg_svm: SVM for regression

View source: R/reg_svm.R

reg_svmR Documentation

SVM for regression

Description

Creates a regression object that uses the Support Vector Machine (SVM) method for regression It wraps the e1071 library.

Usage

reg_svm(attribute, epsilon = 0.1, cost = 10, kernel = "radial")

Arguments

attribute

attribute target to model building

epsilon

parameter that controls the width of the margin around the separating hyperplane

cost

parameter that controls the trade-off between having a wide margin and correctly classifying training data points

kernel

the type of kernel function to be used in the SVM algorithm (linear, radial, polynomial, sigmoid)

Value

A SVM regression object

Examples

data(Boston)
model <- reg_svm("medv", epsilon=0.2,cost=40.000)

# preparing dataset for random sampling
sr <- sample_random()
sr <- train_test(sr, Boston)
train <- sr$train
test <- sr$test

model <- fit(model, train)

test_prediction <- predict(model, test)
test_predictand <- test[,"medv"]
test_eval <- evaluate(model, test_predictand, test_prediction)
test_eval$metrics

daltoolbox documentation built on May 29, 2024, 1:57 a.m.