Nothing
#' @name gl.mahal.assign
#' @title Assigns individuals to populations with an associated probability
#' @family matched reports
#'
#' @description
#' Uses Mahalanobis Distances between individuals and group centroids to
#' calculate probability of group membership
#'
#' @param x Name of the genlight object [required].
#' @param plot.display If TRUE, resultant plots are displayed in the plot window
#' [default TRUE].
#' @param plot.theme Theme for the plot. See Details for options
#' [default theme_dartR()].
#' @param plot.colors List of two color names for the borders and fill of the
#' plots [default c("#2171B5","#6BAED6")].
#' @param plot.dir Directory to save the plot RDS files [default as specified
#' by the global working directory or tempdir()]
#' @param plot.file Name for the RDS binary file to save (base name only, exclude extension) [default NULL]
#' @param verbose Verbosity: 0, silent or fatal errors; 1, begin and end; 2,
#' progress log; 3, progress and results summary; 5, full report
#' [default NULL, unless specified using gl.set.verbosity]
#'
#' @details
#' The function generates 200 simulated individuals for each group (=population in the
#' genlight object) drawing from the observed allele frequencies for each group.
#' The group centroids and covariance matricies are calculated for these simulated
#' groups. The covariance matrix is inverted using package MASS::ginv to overcome the
#' singularities that would otherwise arise with typical SNP data. Mahanobilis
#' Distances are calculated using stats::mahanalobis for each individual in the
#' dataset and associated Chi Square probabilities of group membership are calculated for
#' each individual in the original genlight object. The resultant table can be
#' used for decisions on group membership. A special group (=population in the
#' genlight object) called 'unknowns' can be used to specifically identify
#' individuals with unknown group membership.
#'
#' A color vector can be obtained with gl.select.colors() and then passed to the function
#' with the plot.colors parameter.
#' Themes can be obtained from in \itemize{
#' \item \url{https://ggplot2.tidyverse.org/reference/ggtheme.html} and \item
#' \url{https://yutannihilation.github.io/allYourFigureAreBelongToUs/ggthemes/}
#' }
#' If a plot.file is given, the ggplot arising from this function is saved as an "RDS"
#' binary file using saveRDS(); can be reloaded with readRDS(). A file name must be
#' specified for the plot to be saved.
#' If a plot directory (plot.dir) is specified, the ggplot binary is saved to that
#' directory; otherwise to the tempdir().
#' @author Custodian: Arthur Georges -- Post to
#' \url{https://groups.google.com/d/forum/dartr}
# @examples
#'
#' @importFrom MASS ginv
#' @importFrom stats cov mahalanobis
#' @export
#' @return The unchanged genlight object
#'
gl.mahal.assign <- function(x,
plot.display=TRUE,
plot.theme = theme_dartR(),
plot.colors = NULL,
plot.file=NULL,
plot.dir=NULL,
verbose = NULL) {
# PRELIMINARIES -- checking
# SET VERBOSITY
verbose <- gl.check.verbosity(verbose)
if(verbose==0){plot.display <- FALSE}
# SET WORKING DIRECTORY
plot.dir <- gl.check.wd(plot.dir,verbose=0)
# SET COLOURS
if(is.null(plot.colors)){
plot.colors <- c("#2171B5", "#6BAED6")
} else {
if(length(plot.colors) > 2){
if(verbose >= 2){cat(warn(" More than 2 colors specified, only the first 2 are used\n"))}
plot.colors <- plot.colors[1:2]
}
}
# FLAG SCRIPT START
funname <- match.call()[[1]]
utils.flag.start(func = funname,
build = "v.2023.3",
verbose = verbose)
# CHECK DATATYPE
datatype <- utils.check.datatype(x, accept = c("genlight", "SNP", "SilicoDArT"), verbose = verbose)
# DO THE JOB
# Reduce the dataset to a dense matrix
x <- gl.filter.allna(x, verbose=0)
x <- gl.filter.monomorphs(x,verbose=0)
x <- gl.filter.callrate(x,threshold=0.95,verbose=0)
x <- gl.impute(x,verbose=0)
mat <- as.matrix(x)
# For each population
for (i in 1:nPop(x)){
pop.name <- popNames(x)[i]
gl <- gl.keep.pop(x,pop.list=pop.name,verbose=0)
# Generate a random dataset
gl.expanded <- gl.sim.genotypes(gl, n.ind=min(nLoc(gl),200),verbose=0)
# Compute means and covariances
mat.expanded <- as.matrix(gl.expanded)
means <- colMeans(mat.expanded)
covmat <- stats::cov(mat.expanded)
# Invert the covariance matrix using MASS (mahalanobis algorithm too fussy)
inv <- MASS::ginv(covmat)
# Calculate the Mahal distance for each point in the original genlight object
tmp <- stats::mahalanobis(mat, center=means, cov=inv, inverted=TRUE)
tmp <- as.data.frame(tmp)
tmp$id <- row.names(tmp)
tmp$prob <- round(pchisq(tmp$tmp, df=59, lower.tail=FALSE),4)
tmp$tmp <- NULL
#tmp <- tmp[,c(2,1)]
# Progressive data addition
if(i>1){
result <- merge(result,tmp,by="id")
} else {
result <- tmp
}
}
names(result) <- c("id",popNames(x))
# FLAG SCRIPT END ---------------
if (verbose >= 1) {
cat(report("Completed:", funname, "\n"))
}
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.