Nothing
dNTF <- function(X, M=NULL, pseudocount=.Machine$double.eps,
initA=NULL, fixA=FALSE,
Bin_A=rep(1e-10, length=length(dim(X))),
Ter_A=rep(1e-10, length=length(dim(X))),
L1_A=rep(1e-10, length=length(dim(X))),
L2_A=rep(1e-10, length=length(dim(X))),
rank = 3,
algorithm = c("Frobenius", "KL", "IS", "Beta"),
init = c("dNMF", "Random"),
Beta = 2, thr = 1e-10, num.iter = 100, viz = FALSE, figdir = NULL,
verbose = FALSE){
# Argument check
algorithm <- match.arg(algorithm)
init <- match.arg(init)
.checkdNTF(X, M, pseudocount, initA, fixA,
Bin_A, Ter_A, L1_A, L2_A, rank, Beta,
thr, num.iter, viz, figdir, verbose)
# Initialization of An
int <- .initdNTF(X, M, pseudocount, fixA, rank, init, initA, Bin_A, Ter_A, L1_A, L2_A, Beta,
algorithm, thr, verbose)
X <- int$X
M <- int$M
pM <- int$pM
M_NA <- int$M_NA
fixA <- int$fixA
N <- int$N
A <- int$A
RecError <- int$RecError
TrainRecError <- int$TrainRecError
TestRecError <- int$TestRecError
RelChange <- int$RelChange
Beta <- int$Beta
algorithm <- int$algorithm
iter <- 1
while ((RelChange[iter] > thr) && (iter <= num.iter)) {
# Before Update An
X_bar <- recTensor(rep(1, length = rank), A, idx=seq(N))
pre_Error <- .recError(X, X_bar)
# Fill with Machine Epsilon
for (n in seq(N)) {
A[[n]][which(A[[n]] < pseudocount)] <- pseudocount
A[[n]][which(is.infinite(A[[n]]))] <- pseudocount
A[[n]][which(is.nan(A[[n]]))] <- pseudocount
A[[n]][which(is.nan(A[[n]]))] <- pseudocount
}
# Update An
if (algorithm == "Beta") {
X_bar <- recTensor(rep(1, length = rank), A, idx=seq(N))
for (n in seq(N)) {
if(!fixA[n]){
A_notn <- .KhatriRao_notn(A, n)
numer <- t(A_notn) %*% (cs_unfold(pM*X, m = n)@data/cs_unfold(pM*X_bar^(Beta - 1), m = n)@data)
numer <- numer + 3 * Bin_A[n] * A[[n]]^2
numer <- numer + 30 * Ter_A[n] * A[[n]]^4 + 36 * Ter_A[n] * A[[n]]^2
denom <- t(A_notn) %*% cs_unfold(X_bar^(Beta), m = n)@data
denom <- denom + L1_A[n] + L2_A[n] * A[[n]]
denom <- denom + 2 * Bin_A[n] * A[[n]]^3 + Bin_A[n] * A[[n]]
denom <- denom + 6 * Ter_A[n] * A[[n]]^5 + 52 * Ter_A[n] * A[[n]]^3 + 8 * Ter_A[n] * A[[n]]
A[[n]] <- A[[n]] * (numer / denom)^.rho(Beta)
}
}
}
# Fill with Machine Epsilon
for (n in seq(N)) {
A[[n]][which(A[[n]] < pseudocount)] <- pseudocount
A[[n]][which(is.infinite(A[[n]]))] <- pseudocount
A[[n]][which(is.nan(A[[n]]))] <- pseudocount
A[[n]][which(is.nan(A[[n]]))] <- pseudocount
}
# After Update U, V
iter <- iter + 1
X_bar <- recTensor(rep(1, length = rank), A, idx=seq(N))
RecError[iter] <- .recError(X, X_bar)
TrainRecError[iter] <- .recError((1-M_NA+M)*X, (1-M_NA+M)*X_bar)
TestRecError[iter] <- .recError((M_NA-M)*X, (M_NA-M)*X_bar)
RelChange[iter] <- abs(pre_Error - RecError[iter]) / RecError[iter]
# Visualization
if (viz && !is.null(figdir) && N == 3) {
png(filename = paste0(figdir, "/", iter, ".png"))
plotTensor3D(X_bar)
dev.off()
}
if (viz && is.null(figdir) && N == 3) {
plotTensor3D(X_bar)
}
# Verbose Message
if (verbose) {
cat(paste0(iter-1, " / ", num.iter, " |Previous Error - Error| / Error = ",
RelChange[iter], "\n"))
}
# Exception Handling
if (is.nan(RelChange[iter])) {
stop("NaN is generated. Please run again or change the parameters.\n")
}
}
# Visualization
if (viz && !is.null(figdir) && N == 3) {
png(filename = paste0(figdir, "/finish.png"))
plotTensor3D(X_bar)
dev.off()
png(filename = paste0(figdir, "/original.png"))
plotTensor3D(X)
dev.off()
}
if (viz && is.null(figdir) && N == 3) {
plotTensor3D(X_bar)
}
# Normalization
S <- apply(A[[N]], 1, function(an){
norm(as.matrix(an), "F")
})
A[[N]] <- A[[N]] / S
# Output
names(RecError) <- c("offset", seq_len(iter-1))
names(TrainRecError) <- c("offset", seq_len(iter-1))
names(TestRecError) <- c("offset", seq_len(iter-1))
names(RelChange) <- c("offset", seq_len(iter-1))
list(S = S, A = A,
RecError = RecError,
TrainRecError = TrainRecError,
TestRecError = TestRecError,
RelChange = RelChange)
}
.checkdNTF <- function(X, M, pseudocount, initA, fixA,
Bin_A, Ter_A, L1_A, L2_A, rank, Beta,
thr, num.iter, viz, figdir, verbose){
stopifnot(is.array(X@data))
if(!is.null(M)){
if(!identical(dim(X), dim(M))){
stop("Please specify the dimensions of X and M are same")
}
.checkZeroNA(X, M, type="Tensor")
}
stopifnot(is.numeric(pseudocount))
if(!is.null(initA)){
dimX <- dim(X)
ncolA <- as.vector(unlist(lapply(initA, ncol)))
if(!identical(dimX, ncolA)){
stop("Please specify the dimensions of X and ncol(A[[k]]) are same")
}
}
if(!is.logical(fixA)){
if(!is.vector(fixA)){
stop("Please specify the fixA as a logical or a logical vector such as c(TRUE, FALSE, TRUE)")
}else{
if(length(dim(X)) != length(fixA)){
stop("Please specify the length of fixA same as the order of X")
}
}
}
stopifnot(length(Bin_A) == length(dim(X)))
stopifnot(length(Ter_A) == length(dim(X)))
stopifnot(length(L1_A) == length(dim(X)))
stopifnot(length(L2_A) == length(dim(X)))
stopifnot(all(unlist(lapply(Bin_A, function(x){x > 0}))))
stopifnot(all(unlist(lapply(Ter_A, function(x){x > 0}))))
stopifnot(all(unlist(lapply(L1_A, function(x){x > 0}))))
stopifnot(all(unlist(lapply(L2_A, function(x){x > 0}))))
stopifnot(is.numeric(rank))
stopifnot(is.numeric(Beta))
stopifnot(is.numeric(thr))
stopifnot(is.numeric(num.iter))
stopifnot(is.logical(viz))
stopifnot(is.logical(verbose))
if(!is.character(figdir) && !is.null(figdir)){
stop("Please specify the figdir as a string or NULL")
}
if (verbose) {
cat("Initialization step is running...\n")
}
}
.initdNTF <- function(X, M, pseudocount, fixA, rank, init, initA, Bin_A, Ter_A, L1_A, L2_A, Beta,
algorithm, thr, verbose){
N <- length(dim(X))
T1 <- NULL
E <- NULL
fixA <- rep(fixA, length=length(dim(X)))
# NA mask
M_NA <- X
M_NA@data[] <- 1
M_NA@data[which(is.na(X@data))] <- 0
if(is.null(M)){
M <- M_NA
}
pM <- M
# Pseudo count
X@data[which(is.na(X@data))] <- pseudocount
X <- .pseudocount(X, pseudocount)
pM <- .pseudocount(M, pseudocount)
if(is.null(initA)){
A <- list()
length(A) <- N
for (n in seq(N)) {
if (init == "dNMF") {
Xn <- cs_unfold(X, m = n)@data
res.nmf <- dNMF(Xn, J = rank,
Bin_U=min(Bin_A[-n]), Ter_U=min(Ter_A[-n]),
L1_U=min(L1_A[-n]), L2_U=min(L2_A[-n]),
Bin_V=Bin_A[n], Ter_V=Ter_A[n],
L1_V=L1_A[n], L2_V=L2_A[n],
algorithm = algorithm)
A[[n]] <- t(res.nmf$V)
orderA <- order(sapply(seq(rank), function(x) {
norm(as.matrix(res.nmf$V[, x], "F")) * norm(as.matrix(res.nmf$U[,
x]), "F")
}), decreasing = TRUE)
if(rank != 1){
A[[n]] <- A[[n]][orderA, ]
}
} else if (init == "Random") {
A[[n]] <- matrix(runif(rank * dim(X)[n]), nrow = rank,
ncol = dim(X)[n])
orderA <- order(apply(A[[n]], 1, function(x) {
norm(as.matrix(x), "F")
}), decreasing = TRUE)
}
}
}else{
A <- initA
}
RecError = c()
TrainRecError = c()
TestRecError = c()
RelChange = c()
RecError[1] <- thr * 10
TrainRecError[1] <- thr * 10
TestRecError[1] <- thr * 10
RelChange[1] <- thr * 10
if (algorithm == "Frobenius") {
Beta = 2
algorithm = "Beta"
}
if (algorithm == "KL") {
Beta = 1
algorithm = "Beta"
}
if (algorithm == "IS") {
Beta = 0
algorithm = "Beta"
}
if (verbose) {
cat("Iterative step is running...\n")
}
list(X=X, M=M, pM=pM, M_NA=M_NA,
fixA=fixA, N=N,
A=A, RecError=RecError,
TrainRecError=TrainRecError, TestRecError=TestRecError,
RelChange=RelChange,
Beta=Beta, algorithm=algorithm)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.