inst/unitTests/test_estimate_lambda.R

test_estimate_lambda = function(){

	library(decorrelate)
	# source("~/workspace/repos/decorrelate/R/eb_lambda.R")
	# devtools::reload("./")
	set.seed(1)

	n = 100
	p = 1000
	nu = 1

	autocorr.mat <- function(p = 100, rho = 0.9) {
	    mat <- diag(p)
	    return(rho^abs(row(mat)-col(mat)))
	}

	# cobj = genPositiveDefMat(p)
	# Sigma = cov2cor(cobj$Sigma)
	Sigma = autocorr.mat(p, .9)

	X = matrix(rnorm(n*p), n, p)
	# Use scaling from beam's Rcpp internals
	X = scale(X %*% chol(Sigma)) * sqrt(n / (n-1))

	# beam
	######

	if( library("beam", logical.return=TRUE, warn.conflicts=FALSE, quietly=TRUE) ){
		fit = beam::beam(X, type="marginal", return.only="cor", D = diag(nu, p))

		# fit@alphaOpt

		# head(fit@gridAlpha)

		# version in decorrelate
		########################

		# evaluate eigen-values
		# if( n > p){
		# 	eigs = eigen(crossprod(X), symmetric=TRUE)$values
		# }else{
		# 	eigs = eigen(tcrossprod(X), symmetric=TRUE)$values
		# }

		# # estimate lambda value
		# est = decorrelate::estimate_lambda_eb(eigs, n, p, nu=nu)



		# test stability of lambda as rank changes
	    # sapply((n-20):n, function(k){
	    # 	ev = ecl$dSq[1:k]
		   #  estimate_lambda_eb(n*ev, n, p, nu)
		 # })


		# x = 3
		# ev = eigs
		# ev[n:(n-x)] = mean(ev[n:(n-x)] )
		# decorrelate::estimate_lambda_eb(ev, n, p, nu=nu)


		# ev[n:(n-x)] = 0
		# decorrelate::estimate_lambda_eb(ev, n, p, nu=nu)



		# ecl = eclairs(X, compute="corr", k=90)
		# totalVar = ecl$p
		# ev = ecl$dSq
		# idx = (length(ev)+1):ecl$n
		# ev[idx] = (totalVar-sum(ev)) / length(idx)
	 #   	decorrelate:: estimate_lambda_eb(n*ev, n, p, nu)


	 	 # estimate_lambda_eb(n * ecl$dSq, n, ecl$p, nu)

	 	 # ev = n * ecl$dSq
	 	 # p =  ecl$p


	 	 # estimate_lambda_eb(ev, n, ecl$p, nu)


		# ev = eigs
		# ev[p:length(ev)] = 0
		# lambda = c()
		# for(i in length(eigs):80){
		# 	ev[i] = 0
		# 	value = decorrelate::estimate_lambda_eb(ev, n, p, nu=nu)
		# 	lambda = c(lambda, value)
		# }
		# plot(lambda)

		# cumsum(eigs[1:90]/sum(eigs))

		# ev = eigs
		# ev[p:length(ev)] = 0
		# ev[86:n] = 0
		# ratio = sum(eigs)/ sum(ev)
		# decorrelate::estimate_lambda_eb(ev*ratio, n, p, nu=nu)

		# # fit@alphaOpt
		# # est
		# # decorrelate:::shrinkcovmat.equal_lambda(X)

		ecl = eclairs(X, compute="corr")
	    # lambda_eclairs = estimate_lambda_eb(n*ecl$dSq, n, p, nu)

		# check two estimates of lambda
		# checkEqualsNumeric( fit@alphaOpt, est$lambda, tolerance=1e-4) & checkEqualsNumeric( fit@alphaOpt, ecl$lambda, tolerance=1e-4)
		checkEqualsNumeric( fit@alphaOpt, ecl$lambda, tolerance=1e-4)
	}
}

test_large_scale = function(){

	# run eclairs on very large dataset
	# library(decorrelate)
	# library(Matrix)
	# library(Rfast)

	# set.seed(1)
	# n = 600 # number of samples
	# p = 100 # number of feature per block

	# # Create correlation matrix with autocorrelation
	# autocorr.mat <- function(p = 100, rho = 0.9) {
	#  mat <- diag(p)
	#  return(rho^abs(row(mat)-col(mat)))
	# }

	# # create correlation 
	# Sigma.ch = chol(autocorr.mat(p, .9))
	
	# for( i in 1:4){
	# 	Sigma.ch = bdiag(Sigma.ch, Sigma.ch)
	# }

	# ncol(Sigma.ch)

	# # draw data from correlation matrix Sigma
	# # Y = rmvnorm(n, rep(0, nrow(Sigma)), sigma=Sigma*5.1)
	# Y = matrnorm(n, ncol(Sigma.ch)) %*% Sigma.ch
	# Y = as.matrix(Y)

	# ecl = eclairs(Y)

	# plot(ecl)

	# Sigma = crossprod(Sigma.ch)

	# n_features = 1100

	# ecl2 = eclairs(Y[,1:n_features], lambda=ecl$lambda)
	# C_decor = decorrelate(decorrelate(Sigma[1:n_features,1:n_features], ecl2), ecl2)
	
	# # Sample correlation
	# C_sample = cora(Y[,1:n_features])

	# # extract correlation values
	# C_decor.array = C_decor[lower.tri(C_decor)]
	# C_sample.array = C_sample[lower.tri(C_sample)]

	# i = 1:500000
	# plotScatterDensity( C_sample.array[i], C_decor.array[i] ) + xlim(NA, 1) + ylim(-NA,1) + xlab("Sample correlation") + ylab("Correlation after ADT")  


}

Try the decorrelate package in your browser

Any scripts or data that you put into this service are public.

decorrelate documentation built on Aug. 8, 2025, 7:55 p.m.