Nothing
test_summary_statistics = function(){
set.seed(1)
n = 200 # number of samples
p = 30 # number of features
# create correlation matrix
Sigma = matrix(.2, p, p)
diag(Sigma) = 1
# draw data from correlation matrix Sigma
Y = rmvnorm(n, rep(0, p), sigma=Sigma)
rownames(Y) = paste0("sample_", 1:n)
colnames(Y) = paste0("gene_", 1:p)
# eclairs decomposition
Sigma.eclairs = eclairs(Y, compute="cor")
# Average correlation value
#--------------------------
a = averageCorr( Sigma.eclairs, method="EB" )
# check
S = getCor(Sigma.eclairs)
b = mean(S[lower.tri(S)])
checkEqualsNumeric(a,b)
# Average squared correlation value
#--------------------------
a = averageCorrSq( Sigma.eclairs, method="EB" )
# check
S = getCor(Sigma.eclairs)
b = mean(S[lower.tri(S)]^2)
checkEqualsNumeric(a,b)
# Sum elements in inverse correlation matrix
# Gives the effective number of independent features
#--------------------------
a = sumInverseCorr( Sigma.eclairs, method="EB" )
b = sum(solve(getCor(Sigma.eclairs)))
checkEqualsNumeric(a,b)
# Effective variance
#-------------------
a = effVariance( Sigma.eclairs, method="EB" )
b = det(getCor(Sigma.eclairs))^(1/p)
checkEqualsNumeric(a,b)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.