Nothing
context("Data Handler Torch")
test_that("loop_through_pfc_and_call_trafo", {
# only structured
form = ~ 1 + d(x) + s(x) + lasso(z) + ridge(z) + te(y, df = 5) + d(z) + u
data = data.frame(x = rnorm(100), y = rnorm(100), z = rnorm(100), u = rnorm(100))
controls = penalty_control()
controls$with_layer <- TRUE
output_dim = 1L
param_nr = 1L
d = dnn_placeholder_processor(function(x) nn_linear(in_features = ncol(x), out_features = 1L))
specials = c("s", "te", "ti", "vc", "lasso", "ridge", "offset", "vi", "fm", "vfm")
specials_to_oz = c("d")
gam_terms <- precalc_gam(list(form), data, controls)
controls$gamdata <- gam_terms
res1 <- suppressWarnings(
process_terms(form = form,
d = d,
specials_to_oz = specials_to_oz,
data = data,
output_dim = output_dim,
automatic_oz_check = TRUE,
param_nr = 1,
controls = controls,
parsing_options = form_control(), engine = "torch")
)
ll <- loop_through_pfc_and_call_trafo(list(res1), engine = "torch")
expect_true(all(!is.null(sapply(ll, dim))))
expect_is(ll, "list")
ll <- loop_through_pfc_and_call_trafo(list(res1), data, engine = "torch")
expect_true(all(!is.null(sapply(ll, dim))))
expect_is(ll, "list")
# semi-structured
data <- as.list(data)
mnist <- dataset_mnist()
data$arr <- mnist$train$x[1:100,,]
form = ~ 1 + d(arr) + s(x) + lasso(z) + ridge(z) + te(y, df = 5)+ u
gam_terms <- precalc_gam(list(form), data, controls)
controls$gamdata <- gam_terms
res1 <- suppressWarnings(
process_terms(form = form,
d = d,
specials_to_oz = specials_to_oz,
data = data,
output_dim = output_dim,
automatic_oz_check = TRUE,
param_nr = 1, engine = "torch",
controls = controls,
parsing_options = form_control())
)
ll <- loop_through_pfc_and_call_trafo(list(res1), engine = "torch")
expect_true(all(!is.null(sapply(ll, dim))))
expect_is(ll, "list")
ll <- loop_through_pfc_and_call_trafo(list(res1), data, engine = "torch")
expect_true(all(!is.null(sapply(ll, dim))))
expect_is(ll, "list")
})
test_that("properties of dataset torch", {
n <- 100
loc_x <- matrix(runif(n), ncol = 1)
scale_intercept <- loc_intercept <- matrix(rep(1, n), ncol = 1)
target <- matrix(runif(n = n), ncol = 1)
data <- c(
list(list(loc_intercept, loc_x)),
list(list(scale_intercept)))
mod <- deepregression(y = target, list_of_formulas =
list(loc = ~ 1 + x,
scale = ~ 1), data = data.frame("x" = loc_x),
engine = "torch")
luz_dataset <- get_luz_dataset(df_list = data, object = mod)
expect_true("deepregression_luz_dataset" %in% class(luz_dataset))
# two parameters
expect_equal(length(luz_dataset$.getbatch(1)[[1]]), length(data)[[1]])
expect_true(
luz_dataset$.length() == n
)
luz_dataset <- get_luz_dataset(df_list = data, target = target, object = mod)
# two parameters
expect_equal(length(luz_dataset$.getbatch(1)[[1]]), attr(
make_torch_dist(mod$init_params$family), "nrparams_dist"))
expect_true(
luz_dataset$.length() == n
)
expect_true(
length(luz_dataset$target) == n
)
expect_true(
ncol(luz_dataset$target) == 1
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.