Nothing
#-------------------------------------------------------------------------------
# Two sample dependent t_test
#-------------------------------------------------------------------------------
grid <- expand.grid(
ln1 = 1:3,
ln2 = 1:3,
lratio = 1:3,
lcv1 = 1:3,
lcv2 = 1:3,
lcor = 1:3
)
grid <- grid |>
dplyr::rowwise() |>
dplyr::mutate(
params = list(list(
n1 = sample(10:30, ln1, replace = FALSE),
n2 = sample(10:30, ln2, replace = FALSE),
ratio = runif(n = lratio, min = 1.2, max = 1.8),
cv1 = runif(n = lcv1, min = 0.2, max = 0.7),
cv2 = runif(n = lcv2, min = 0.2, max = 0.7),
cor = runif(n = lcor, min = 0.1, max = 0.5)
))
)
test_plot <- function(fun, grid) {
for(i in sample(seq_len(nrow(grid)), size = 10, replace = FALSE)) {#seq_len(nrow(grid))) {
res <- fun(
n1 = grid$params[[i]]$n1,
n2 = grid$params[[i]]$n1,
ratio = grid$params[[i]]$ratio,
cv1 = grid$params[[i]]$cv1,
cv2 = grid$params[[i]]$cv2,
cor = grid$params[[i]]$cor,
nsims = 300
)
print(res |> power() |> plot())
}
}
test_plot(fun = sim_log_lognormal, grid = grid)
sim_log_lognormal(
n1 = 10:20,
n2 = 10:20,
ratio = c(1.7, 2, 2.5),
cv1 = 0.5,
cv2 = 0.5,
cor = c(0.3, 0.5),
nsims = 300
) |>
power() |>
plot()
sim_log_lognormal(
n1 = 10:20,
n2 = 10:20,
ratio = c(1.7, 2, 2.5),
cv1 = 0.5,
cv2 = 0.5,
cor = c(0, 0.3, 0.5),
nsims = 300
) |>
power() |>
plot(facet_row = "ratio")
#-------------------------------------------------------------------------------
# Two sample independent t_test
#-------------------------------------------------------------------------------
grid <- expand.grid(
ln1 = 1:3,
ln2 = 1:3,
lratio = 1:3,
lcv1 = 1:3,
lcv2 = 1:3
)
grid <- grid |>
dplyr::rowwise() |>
dplyr::mutate(
params = list(list(
n1 = sample(10:30, ln1, replace = FALSE),
n2 = sample(10:30, ln2, replace = FALSE),
ratio = runif(n = lratio, min = 1.2, max = 1.8),
cv1 = runif(n = lcv1, min = 0.2, max = 0.7),
cv2 = runif(n = lcv2, min = 0.2, max = 0.7),
cor = 0
))
)
test_plot <- function(fun, grid) {
for(i in sample(seq_len(nrow(grid)), size = 10, replace = FALSE)) {#seq_len(nrow(grid))) {
res <- fun(
n1 = grid$params[[i]]$n1,
n2 = grid$params[[i]]$n2,
ratio = grid$params[[i]]$ratio,
cv1 = grid$params[[i]]$cv1,
cv2 = grid$params[[i]]$cv2,
cor = grid$params[[i]]$cor,
nsims = 300
)
print(res |> power() |> plot())
}
}
test_plot(fun = sim_log_lognormal, grid = grid)
sim_log_lognormal(
n1 = 10:20,
n2 = 10:20,
ratio = c(1.7, 2, 2.5),
cv1 = 0.5,
cv2 = 0.5,
cor = c(0),
nsims = 300
) |>
power() |>
plot()
sim_log_lognormal(
n1 = 10:20,
n2 = 10:20,
ratio = c(1.7, 2, 2.5),
cv1 = 0.5,
cv2 = 0.5,
cor = c(0),
nsims = 300
) |>
power() |>
plot(facet_row = "ratio")
#-------------------------------------------------------------------------------
# One sample t_test
#-------------------------------------------------------------------------------
grid <- expand.grid(
ln1 = 1:3,
lratio = 1:3,
lcv1 = 1:3
)
grid <- grid |>
dplyr::rowwise() |>
dplyr::mutate(
params = list(list(
n1 = sample(10:30, ln1, replace = FALSE),
ratio = runif(n = lratio, min = 1.2, max = 1.8),
cv1 = runif(n = lcv1, min = 0.2, max = 0.7)
))
)
test_plot <- function(fun, grid) {
for(i in sample(seq_len(nrow(grid)), size = 10, replace = FALSE)) {#seq_len(nrow(grid))) {
res <- fun(
n1 = grid$params[[i]]$n1,
ratio = grid$params[[i]]$ratio,
cv1 = grid$params[[i]]$cv1,
nsims = 300
)
print(res |> power() |> plot())
}
}
test_plot(fun = sim_log_lognormal, grid = grid)
sim_log_lognormal(
n1 = 10:20,
ratio = c(1.7, 2, 2.5),
cv1 = 0.5,
nsims = 300
) |>
power() |>
plot()
sim_log_lognormal(
n1 = 10:20,
ratio = c(1.7, 2, 2.5),
cv1 = 0.5,
nsims = 300
) |>
power() |>
plot(facet_row = "ratio")
#-------------------------------------------------------------------------------
# Two sample independent nb test
#-------------------------------------------------------------------------------
grid <- expand.grid(
ln1 = 1:3,
ln2 = 1:3,
lmean1 = 1:3,
lratio = 1:3,
ldispersion1 = 1:3,
ldispersion2 = 1:3,
ltest = 1:2
)
grid <- grid |>
dplyr::rowwise() |>
dplyr::mutate(
params = list(list(
n1 = sample(10:30, ln1, replace = FALSE),
n2 = sample(10:30, ln2, replace = FALSE),
mean1 = rnorm(n = lmean1, mean = 20, sd = 5),
ratio = runif(n = lratio, min = 1.2, max = 1.8),
dispersion1 = runif(n = ldispersion1, min = 1, max = 8),
dispersion2 = runif(n = ldispersion2, min = 1, max = 8),
test = sample(c(`Wald test` = "wald_test_nb", `LRT` = "lrt_nb"), ltest, replace = FALSE)
))
)
test_plot <- function(fun, grid) {
for(i in sample(seq_len(nrow(grid)), size = 5, replace = FALSE)) {#seq_len(nrow(grid))) {
res <- fun(
n1 = grid$params[[i]]$n1,
n2 = grid$params[[i]]$n2,
mean1 = grid$params[[i]]$mean1,
ratio = grid$params[[i]]$ratio,
dispersion1 = grid$params[[i]]$dispersion1,
dispersion2 = grid$params[[i]]$dispersion2,
nsims = 75
)
print(res |> power() |> plot())
}
}
test_plot(fun = sim_nb, grid = grid)
sim_nb(
n1 = c(15, 20),
n2 = c(15, 20),
mean1 = c(10, 20),
ratio = c(1.7, 2),
dispersion1 = 2,
dispersion2 = 2,
nsims = 100
) |>
power() |>
plot()
sim_nb(
n1 = c(15, 20),
n2 = c(15, 20),
mean1 = c(10, 20),
ratio = c(1.7, 2),
dispersion1 = 2,
dispersion2 = 2,
nsims = 100
) |>
power() |>
plot(facet_row = "ratio")
#-------------------------------------------------------------------------------
# dependent bnb test
#-------------------------------------------------------------------------------
grid <- expand.grid(
ln = 1:3,
lmean1 = 1:3,
lratio = 1:3,
ldispersion = 1:3,
ltest = 1:2
)
grid <- grid |>
dplyr::rowwise() |>
dplyr::mutate(
params = list(list(
n = sample(10:30, ln, replace = FALSE),
mean1 = rnorm(n = lmean1, mean = 20, sd = 5),
ratio = runif(n = lratio, min = 1.2, max = 1.8),
dispersion = runif(n = ldispersion, min = 1, max = 8),
test = sample(c(`Wald test` = "wald_test_bnb", `LRT` = "lrt_bnb"), ltest, replace = FALSE)
))
)
test_plot <- function(fun, grid) {
for(i in sample(seq_len(nrow(grid)), size = 5, replace = FALSE)) {#seq_len(nrow(grid))) {
res <- fun(
n = grid$params[[i]]$n,
mean1 = grid$params[[i]]$mean1,
ratio = grid$params[[i]]$ratio,
dispersion = grid$params[[i]]$dispersion,
nsims = 75
)
print(res |> power() |> plot())
}
}
test_plot(fun = sim_bnb, grid = grid)
sim_bnb(
n = c(15, 20),
mean1 = c(10, 20),
ratio = c(1.2, 1.4),
dispersion = 10,
nsims = 500
) |>
power() |>
plot()
sim_bnb(
n = c(15, 20),
mean1 = c(10, 20),
ratio = c(1.2, 1.4),
dispersion = 10,
nsims = 500
) |>
power() |>
plot(facet_row = "ratio")
#-------------------------------------------------------------------------------
# When nsims varies, make sure all plot points are shown and caption is correct.
#-------------------------------------------------------------------------------
set.seed(1234)
sim_bnb(
n = c(10),
mean1 = 5.9,
ratio = c(0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2),
dispersion = c(0.49, 2),
nsims = 100,
return_type = "list"
) |>
power("Wald Test" = wald_test_bnb(link = "squared"), alpha = 0.05) |>
plot(hline = 0.05, x_axis = "ratio")
#-------------------------------------------------------------------------------
# If you jump the queue in axis sorting, are those who got pushed back still
# plotted?
# n1 and n2 should be on plot.
#-------------------------------------------------------------------------------
set.seed(1234)
sim_nb(
n1 = c(15, 20),
n2 = c(15, 20),
mean1 = c(10, 20),
ratio = c(1.7, 2),
dispersion1 = 2,
dispersion2 = 2,
nsims = 100
) |>
power() |>
plot(facet_row = "ratio", x_axis = "n1")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.