View source: R/plausible_values.R
plausible_values | R Documentation |
Draws plausible values based on test scores
plausible_values(
dataSrc,
parms = NULL,
predicate = NULL,
covariates = NULL,
nPV = 1,
parms_draw = c("sample", "average"),
prior_dist = c("normal", "mixture"),
merge_within_persons = FALSE
)
dataSrc |
a connection to a dexter database, a matrix, or a data.frame with columns: person_id, item_id, item_score |
parms |
An object returned by function |
predicate |
an expression to filter data. If missing, the function will use all data in dataSrc |
covariates |
name or a vector of names of the variables to group the populations used to improve the prior. A covariate must be a discrete person property (e.g. not a float) that indicates nominal categories, e.g. gender or school. If dataSrc is a data.frame, it must contain the covariate. |
nPV |
Number of plausible values to draw per person. |
parms_draw |
when the item parameters are estimated with method "Bayes" (see: |
prior_dist |
use a normal prior for the plausible values or a mixture of two normals. A mixture is only possible when there are no covariates. |
merge_within_persons |
If a person took multiple booklets, this indicates whether plausible values are generated per person (TRUE) or per booklet (FALSE) |
When the item parameters are estimated using fit_enorm(..., method='Bayes')
and parms_draw = 'sample', the uncertainty
of the item parameters estimates is taken into account when drawing multiple plausible values.
In there are covariates, the prior distribution is a hierarchical normal with equal variances across groups. When there is only one group this becomes a regular normal distribution. When there are no covariates and prior_dist = "mixture", the prior is a mixture distribution of two normal distributions which gives a little more flexibility than a normal prior.
A data.frame with columns booklet_id, person_id, booklet_score, any covariate columns, and nPV plausible values named PV1...PVn.
Marsman, M., Maris, G., Bechger, T. M., and Glas, C.A.C. (2016) What can we learn from plausible values? Psychometrika. 2016; 81: 274-289. See also the vignette.
db = start_new_project(verbAggrRules, ":memory:",
person_properties=list(gender="<unknown>"))
add_booklet(db, verbAggrData, "agg")
add_item_properties(db, verbAggrProperties)
f=fit_enorm(db)
pv_M=plausible_values(db,f,(mode=="Do")&(gender=="Male"))
pv_F=plausible_values(db,f,(mode=="Do")&(gender=="Female"))
par(mfrow=c(1,2))
plot(ecdf(pv_M$PV1),
main="Do: males versus females", xlab="Ability", col="red")
lines(ecdf(pv_F$PV1), col="green")
legend(-2.2,0.9, c("female", "male") ,
lty=1, col=c('green', 'red'), bty='n', cex=.75)
pv_M=plausible_values(db,f,(mode=="Want")&(gender=="Male"))
pv_F=plausible_values(db,f,(mode=="Want")&(gender=="Female"))
plot(ecdf(pv_M$PV1),
main="Want: males versus females", xlab=" Ability", col="red")
lines(ecdf(pv_F$PV1),col="green")
legend(-2.2,0.9, c("female", "male") ,
lty=1, col=c('green', 'red'), bty='n', cex=.75)
close_project(db)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.