Nothing
#' Metric Dimensional Scaling
#'
#' An S4 Class implementing classical scaling (MDS).
#'
#' MDS tries to maintain distances in high- and low-dimensional space,
#' it has the advantage over PCA that arbitrary distance functions can
#' be used, but it is computationally more demanding.
#'
#' @template dimRedMethodSlots
#'
#' @template dimRedMethodGeneralUsage
#'
#' @section Parameters:
#' MDS can take the following parameters:
#' \describe{
#' \item{ndim}{The number of dimensions.}
#' \item{d}{The function to calculate the distance matrix from the input coordinates, defaults to euclidean distances.}
#' }
#'
#' @section Implementation:
#'
#' Wraps around \code{\link[stats]{cmdscale}}. The implementation also
#' provides an out-of-sample extension which is not completely
#' optimized yet.
#'
#' @references
#'
#' Torgerson, W.S., 1952. Multidimensional scaling: I. Theory and method.
#' Psychometrika 17, 401-419. https://doi.org/10.1007/BF02288916
#'
#' @examples
#' \dontrun{
#' dat <- loadDataSet("3D S Curve")
#' emb <- embed(dat, "MDS")
#' plot(emb, type = "2vars")
#'
#' # a "manual" kPCA:
#' emb2 <- embed(dat, "MDS", d = function(x) exp(stats::dist(x)))
#' plot(emb2, type = "2vars")
#'
#' # a "manual", more customizable, and slower Isomap:
#' emb3 <- embed(dat, "MDS", d = function(x) vegan::isomapdist(vegan::vegdist(x, "manhattan"), k = 20))
#' plot(emb3)
#'
#' }
#' @include dimRedResult-class.R
#' @include dimRedMethod-class.R
#' @family dimensionality reduction methods
#' @export MDS
#' @exportClass MDS
MDS <- setClass(
"MDS",
contains = "dimRedMethod",
prototype = list(
stdpars = list(d = stats::dist, ndim = 2),
fun = function (data, pars,
keep.org.data = TRUE) {
##
meta <- data@meta
orgdata <- if (keep.org.data) data@data else NULL
indata <- data@data
## there are only efficient implementations for euclidean
## distances: extra efficient implementation for euclidean
## distances are possible, D is quared several times, it would be
## much faster to compute the squared distance right away.
has.apply <- identical(all.equal(pars$d, dist), TRUE) # == TRUE
# necessary,
# because
# all.equal
# returns
# TRUE or an
# error
# string!!!!
D <- as.matrix(pars$d(indata))
if (has.apply) mD2 <- mean(D ^ 2)
## cmdscale square the matrix internally
res <- stats::cmdscale(D, k = pars$ndim)
outdata <- res
D <- NULL
## Untested: remove that from environment before creating
## appl function, else it will stay in its environment
## forever
appl <- if (!has.apply) function(x) NA else function(x) {
appl.meta <- if (inherits(x, "dimRedData")) x@meta else data.frame()
proj <- if (inherits(x, "dimRedData")) x@data else x
## double center new data with respect to old: TODO: optimize
## this method, according to the de Silva, Tenenbaum(2004)
## paper. Need an efficient method to calculate the distance
## matrices between different point sets and arbitrary
## distances.
Kab <- as.matrix(pars$d(proj) ^ 2)
Exa <- colMeans(pdist2(indata, proj))
Kab <- sweep(Kab, 1, Exa) #, "-")
Kab <- sweep(Kab, 2, Exa) #, "-")
Kab <- -0.5 * (Kab + mD2)
## Eigenvalue decomposition
tmp <- eigen(Kab, symmetric = TRUE)
ev <- tmp$values[seq_len(pars$ndim)]
evec <- tmp$vectors[, seq_len(pars$ndim), drop = FALSE]
k1 <- sum(ev > 0)
if (k1 < pars$ndim) {
warning(gettextf("only %d of the first %d eigenvalues are > 0",
k1, k), domain = NA)
evec <- evec[, ev > 0, drop = FALSE]
ev <- ev[ev > 0]
}
points <- evec * rep(sqrt(ev), each = nrow(proj))
dimnames(points) <- list(NULL, paste0("MDS", seq_len(ncol(points))))
new("dimRedData", data = points, meta = appl.meta)
}
colnames(outdata) <- paste0("MDS", seq_len(ncol(outdata)))
return(new(
"dimRedResult",
data = new("dimRedData",
data = outdata,
meta = meta),
org.data = orgdata,
apply = appl,
has.org.data = keep.org.data,
has.apply = has.apply,
method = "mds",
pars = pars
))
})
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.