Nothing
#' Contribution of Individual Variables to Time Series Dissimilarity
#'
#' @description
#'
#' This function measures the contribution of individual variables to the dissimilarity between pairs of time series to help answer the question *what makes two time series more or less similar?*
#'
#' Three key values are required to assess individual variable contributions:
#' \itemize{
#' \item **psi**: dissimilarity when all variables are considered.
#' \item **psi_only_with**: dissimilarity when using only the target variable.
#' \item **psi_without**: dissimilarity when removing the target variable.
#' }
#'
#' The values `psi_only_with` and `psi_without` can be computed in two different ways defined by the argument `robust`.
#' \itemize{
#' \item `robust = FALSE`: This method replicates the importance algorithm released with the first version of the package, and it is only recommended when the goal to compare new results with previous studies. It normalizes `psi_only_with` and `psi_without` using the least cost path obtained from the individual variable. As different variables may have different least cost paths for the same time series, normalization values may change from variable to variable, making individual importance scores harder to compare.
#' \item `robust = TRUE` (default, recommended): This a novel version of the importance algorithm that yields more stable and comparable solutions. It uses the least cost path of the complete time series to normalize `psi_only_with` and `psi_without`, making importance scores of separate variables fully comparable.
#' }
#'
#' The individual importance score of each variable (column "importance" in the output data frame) is based on different expressions depending on the `robust` argument, even when `lock_step = TRUE`:
#' \itemize{
#' \item `robust = FALSE`: Importance is computed as `((psi - psi_without) * 100)/psi` and interpreted as "change in similarity when a variable is removed".
#' \item `robust = TRUE`: Importance is computed as `((psi_only_with - psi_without) * 100)/psi` and interpreted as "relative dissimilarity induced by the variable expressed as a percentage".
#' }
#'
#' In either case, positive values indicate that the variable contributes to dissimilarity, while negative values indicate a net contribution to similarity.
#'
#' This function allows computing dissimilarity between pairs of time series using different combinations of arguments at once. For example, when the argument `distance` is set to `c("euclidean", "manhattan")`, the output data frame will show two dissimilarity scores for each pair of time series, one based on euclidean distances, and another based on manhattan distances. The same happens for most other parameters.
#'
#' This function supports a parallelization setup via [future::plan()], and progress bars provided by the package [progressr](https://CRAN.R-project.org/package=progressr).
#'
#' @inheritParams distantia
#' @param robust (required, logical). If TRUE (default), importance scores are computed using the least cost path of the complete time series as reference. Setting it to FALSE allows to replicate importance scores of the previous versions of this package. This option is irrelevant when `lock_step = TRUE`. Default: TRUE
#' @return data frame:
#' \itemize{
#' \item `x`: name of the time series `x`.
#' \item `y`: name of the time series `y`.
#' \item `psi`: psi score of `x` and `y`.
#' \item `variable`: name of the individual variable.
#' \item `importance`: importance score of the variable.
#' \item `effect`: interpretation of the "importance" column, with the values "increases similarity" and "decreases similarity".
#' \item `psi_only_with`: psi score of the variable.
#' \item `psi_without`: psi score without the variable.
#' \item `psi_difference`: difference between `psi_only_with` and `psi_without`.
#' \item `distance`: name of the distance metric.
#' \item `diagonal`: value of the argument `diagonal`.
#' \item `lock_step`: value of the argument `lock_step`.
#' \item `robust`: value of the argument `robust`.
#' }
#' @export
#' @autoglobal
#' @examples
#'
#' #progress bar
#' # progressr::handlers(global = TRUE)
#'
#' tsl <- tsl_initialize(
#' x = distantia::albatross,
#' name_column = "name",
#' time_column = "time"
#' ) |>
#' tsl_transform(
#' f = f_scale_global
#' )
#'
#' df <- momentum(
#' tsl = tsl,
#' lock_step = TRUE #to speed-up example
#' )
#'
#' #focus on important columns
#' df[, c(
#' "x",
#' "y",
#' "variable",
#' "importance",
#' "effect"
#' )]
#'
#' @family momentum
#'
momentum <- function(
tsl = NULL,
distance = "euclidean",
diagonal = TRUE,
bandwidth = 1,
lock_step = FALSE,
robust = TRUE
){
#check input arguments
args <- utils_check_args_momentum(
tsl = tsl,
distance = distance,
diagonal = diagonal,
bandwidth = bandwidth,
lock_step = lock_step,
robust = robust
)
tsl <- args$tsl
distance <- args$distance
diagonal <- args$diagonal
bandwidth <- args$bandwidth
lock_step <- args$lock_step
robust <- args$robust
#lock-step check
if(any(lock_step == TRUE)){
#count rows in time series
row_counts <- tsl |>
tsl_nrow() |>
unlist() |>
unique()
if(length(row_counts) > 1){
message(
"distantia::momentum(): argument 'lock_step' is TRUE, but time series in 'tsl' do not have the same number of rows. Setting 'lock_step' to FALSE."
)
lock_step <- FALSE
}
}
#stop if tsl is univariate
tsl_ncol <- tsl_ncol(tsl = tsl) |>
unlist() |>
unique()
if(1 %in% tsl_ncol){
stop(
"distantia::momentum(): variable contribution analysis requires multivariate time series, but 'tsl' contains univariate time series.",
call. = FALSE
)
}
#tsl pairs
df <- utils_tsl_pairs(
tsl = tsl,
args_list = list(
distance = distance,
diagonal = diagonal,
bandwidth = bandwidth,
lock_step = lock_step,
robust = robust
)
)
iterations <- seq_len(nrow(df))
p <- progressr::progressor(along = iterations)
#iterate over pairs of time series
df <- foreach::foreach(
i = iterations,
.combine = "rbind",
.options.future = list(seed = TRUE)
) %dofuture% {
p()
df.i <- df[i, ]
x <- tsl[[df.i$x]]
y <- tsl[[df.i$y]]
if(df.i$lock_step == TRUE){
df.i$robust <- TRUE
importance.i <- importance_ls_cpp(
x = x,
y = y,
distance = df.i$distance
)
#replacing importance with psi_drop
if(df.i$robust == FALSE){
importance.i$importance <- importance.i$psi_drop
}
importance.i$psi_drop <- NULL
} else {
if(df.i$robust == TRUE){
importance.i <- importance_dtw_cpp(
x = x,
y = y,
distance = df.i$distance,
diagonal = df.i$diagonal,
bandwidth = df.i$bandwidth
)
} else {
importance.i <- importance_dtw_legacy_cpp(
x = x,
y = y,
distance = df.i$distance,
diagonal = df.i$diagonal
)
}
} #end of importance i
#set NaN to zero for constant pairs of sequences
importance.i[is.na(importance.i)] <- 0
importance.i <- merge(
x = df.i,
y = importance.i
)
return(importance.i)
} #end of loop
#interpretation
df$effect <- ifelse(
test = df$importance > 0,
yes = "decreases similarity",
no = "increases similarity"
)
df <- df[
, c(
"x",
"y",
"psi",
"variable",
"importance",
"effect",
"psi_difference",
"psi_without",
"psi_only_with",
"distance",
"diagonal",
"bandwidth",
"lock_step",
"robust"
)
]
#remove dtw arguments if only lock-step was used
if(
"lock_step" %in% colnames(df) &&
sum(df[["lock_step"]]) == nrow(df)
){
df$diagonal <- NULL
df$bandwidth <- NULL
}
attr(
x = df,
which = "type"
) <- "momentum_df"
df
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.