ChiSquaredNoncentral | R Documentation |
Mathematical and statistical functions for the Noncentral Chi-Squared distribution, which is commonly used to model the sum of independent squared Normal distributions and for confidence intervals.
The Noncentral Chi-Squared distribution parameterised with degrees of freedom, ν, and location, λ, is defined by the pdf,
f(x) = exp(-λ/2) ∑_{r=0}^∞ ((λ/2)^r/r!) (x^{(ν+2r)/2-1}exp(-x/2))/(2^{(ν+2r)/2}Γ((ν+2r)/2))
for ν ≥ 0, λ ≥ 0.
Returns an R6 object inheriting from class SDistribution.
The distribution is supported on the Positive Reals.
ChiSqNC(df = 1, location = 0)
N/A
N/A
distr6::Distribution
-> distr6::SDistribution
-> ChiSquaredNoncentral
name
Full name of distribution.
short_name
Short name of distribution for printing.
description
Brief description of the distribution.
packages
Packages required to be installed in order to construct the distribution.
properties
Returns distribution properties, including skewness type and symmetry.
new()
Creates a new instance of this R6 class.
ChiSquaredNoncentral$new(df = NULL, location = NULL, decorators = NULL)
df
(integer(1))
Degrees of freedom of the distribution defined on the positive Reals.
location
(numeric(1))
Location parameter, defined on the non-negative Reals.
decorators
(character())
Decorators to add to the distribution during construction.
mean()
The arithmetic mean of a (discrete) probability distribution X is the expectation
E_X(X) = ∑ p_X(x)*x
with an integration analogue for continuous distributions.
ChiSquaredNoncentral$mean(...)
...
Unused.
variance()
The variance of a distribution is defined by the formula
var_X = E[X^2] - E[X]^2
where E_X is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.
ChiSquaredNoncentral$variance(...)
...
Unused.
skewness()
The skewness of a distribution is defined by the third standardised moment,
sk_X = E_X[((x - μ)/σ)^3]
where E_X is the expectation of distribution X, μ is the mean of the distribution and σ is the standard deviation of the distribution.
ChiSquaredNoncentral$skewness(...)
...
Unused.
kurtosis()
The kurtosis of a distribution is defined by the fourth standardised moment,
k_X = E_X[((x - μ)/σ)^4]
where E_X is the expectation of distribution X, μ is the mean of the distribution and σ is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.
ChiSquaredNoncentral$kurtosis(excess = TRUE, ...)
excess
(logical(1))
If TRUE
(default) excess kurtosis returned.
...
Unused.
mgf()
The moment generating function is defined by
mgf_X(t) = E_X[exp(xt)]
where X is the distribution and E_X is the expectation of the distribution X.
ChiSquaredNoncentral$mgf(t, ...)
t
(integer(1))
t integer to evaluate function at.
...
Unused.
cf()
The characteristic function is defined by
cf_X(t) = E_X[exp(xti)]
where X is the distribution and E_X is the expectation of the distribution X.
ChiSquaredNoncentral$cf(t, ...)
t
(integer(1))
t integer to evaluate function at.
...
Unused.
clone()
The objects of this class are cloneable with this method.
ChiSquaredNoncentral$clone(deep = FALSE)
deep
Whether to make a deep clone.
Jordan Deenichin
McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.
Other continuous distributions:
Arcsine
,
BetaNoncentral
,
Beta
,
Cauchy
,
ChiSquared
,
Dirichlet
,
Erlang
,
Exponential
,
FDistributionNoncentral
,
FDistribution
,
Frechet
,
Gamma
,
Gompertz
,
Gumbel
,
InverseGamma
,
Laplace
,
Logistic
,
Loglogistic
,
Lognormal
,
MultivariateNormal
,
Normal
,
Pareto
,
Poisson
,
Rayleigh
,
ShiftedLoglogistic
,
StudentTNoncentral
,
StudentT
,
Triangular
,
Uniform
,
Wald
,
Weibull
Other univariate distributions:
Arcsine
,
Bernoulli
,
BetaNoncentral
,
Beta
,
Binomial
,
Categorical
,
Cauchy
,
ChiSquared
,
Degenerate
,
DiscreteUniform
,
Empirical
,
Erlang
,
Exponential
,
FDistributionNoncentral
,
FDistribution
,
Frechet
,
Gamma
,
Geometric
,
Gompertz
,
Gumbel
,
Hypergeometric
,
InverseGamma
,
Laplace
,
Logarithmic
,
Logistic
,
Loglogistic
,
Lognormal
,
Matdist
,
NegativeBinomial
,
Normal
,
Pareto
,
Poisson
,
Rayleigh
,
ShiftedLoglogistic
,
StudentTNoncentral
,
StudentT
,
Triangular
,
Uniform
,
Wald
,
Weibull
,
WeightedDiscrete
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.