Erlang: Erlang Distribution Class

Description Details Value Distribution support Default Parameterisation Omitted Methods Also known as Super classes Public fields Methods References See Also

Description

Mathematical and statistical functions for the Erlang distribution, which is commonly used as a special case of the Gamma distribution when the shape parameter is an integer.

Details

The Erlang distribution parameterised with shape, α, and rate, β, is defined by the pdf,

f(x) = (β^α)(x^{α-1})(exp(-xβ)) /(α-1)!

for α = 1,2,3,… and β > 0.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on the Positive Reals.

Default Parameterisation

Erlang(shape = 1, rate = 1)

Omitted Methods

N/A

Also known as

N/A

Super classes

distr6::Distribution -> distr6::SDistribution -> Erlang

Public fields

name

Full name of distribution.

short_name

Short name of distribution for printing.

description

Brief description of the distribution.

packages

Packages required to be installed in order to construct the distribution.

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
Erlang$new(shape = NULL, rate = NULL, scale = NULL, decorators = NULL)
Arguments
shape

(integer(1))
Shape parameter, defined on the positive Naturals.

rate

(numeric(1))
Rate parameter of the distribution, defined on the positive Reals.

scale

numeric(1))
Scale parameter of the distribution, defined on the positive Reals. scale = 1/rate. If provided rate is ignored.

decorators

(character())
Decorators to add to the distribution during construction.


Method mean()

The arithmetic mean of a (discrete) probability distribution X is the expectation

E_X(X) = ∑ p_X(x)*x

with an integration analogue for continuous distributions.

Usage
Erlang$mean(...)
Arguments
...

Unused.


Method mode()

The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage
Erlang$mode(which = "all")
Arguments
which

(character(1) | numeric(1)
Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.


Method variance()

The variance of a distribution is defined by the formula

var_X = E[X^2] - E[X]^2

where E_X is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.

Usage
Erlang$variance(...)
Arguments
...

Unused.


Method skewness()

The skewness of a distribution is defined by the third standardised moment,

sk_X = E_X[((x - μ)/σ)^3]

where E_X is the expectation of distribution X, μ is the mean of the distribution and σ is the standard deviation of the distribution.

Usage
Erlang$skewness(...)
Arguments
...

Unused.


Method kurtosis()

The kurtosis of a distribution is defined by the fourth standardised moment,

k_X = E_X[((x - μ)/σ)^4]

where E_X is the expectation of distribution X, μ is the mean of the distribution and σ is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage
Erlang$kurtosis(excess = TRUE, ...)
Arguments
excess

(logical(1))
If TRUE (default) excess kurtosis returned.

...

Unused.


Method entropy()

The entropy of a (discrete) distribution is defined by

- ∑ (f_X)log(f_X)

where f_X is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage
Erlang$entropy(base = 2, ...)
Arguments
base

(integer(1))
Base of the entropy logarithm, default = 2 (Shannon entropy)

...

Unused.


Method mgf()

The moment generating function is defined by

mgf_X(t) = E_X[exp(xt)]

where X is the distribution and E_X is the expectation of the distribution X.

Usage
Erlang$mgf(t, ...)
Arguments
t

(integer(1))
t integer to evaluate function at.

...

Unused.


Method cf()

The characteristic function is defined by

cf_X(t) = E_X[exp(xti)]

where X is the distribution and E_X is the expectation of the distribution X.

Usage
Erlang$cf(t, ...)
Arguments
t

(integer(1))
t integer to evaluate function at.

...

Unused.


Method pgf()

The probability generating function is defined by

pgf_X(z) = E_X[exp(z^x)]

where X is the distribution and E_X is the expectation of the distribution X.

Usage
Erlang$pgf(z, ...)
Arguments
z

(integer(1))
z integer to evaluate probability generating function at.

...

Unused.


Method clone()

The objects of this class are cloneable with this method.

Usage
Erlang$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.

See Also

Other continuous distributions: Arcsine, BetaNoncentral, Beta, Cauchy, ChiSquaredNoncentral, ChiSquared, Dirichlet, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Gompertz, Gumbel, InverseGamma, Laplace, Logistic, Loglogistic, Lognormal, MultivariateNormal, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, Degenerate, DiscreteUniform, Empirical, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete


distr6 documentation built on Sept. 6, 2021, 9:10 a.m.