Degenerate: Degenerate Distribution Class

Description Details Value Distribution support Default Parameterisation Omitted Methods Also known as Super classes Public fields Active bindings Methods References See Also

Description

Mathematical and statistical functions for the Degenerate distribution, which is commonly used to model deterministic events or as a representation of the delta, or Heaviside, function.

Details

The Degenerate distribution parameterised with mean, μ is defined by the pmf,

f(x) = 1, if x = μ

f(x) = 0, if x != μ

for μ ε R.

Value

Returns an R6 object inheriting from class SDistribution.

Distribution support

The distribution is supported on {μ}.

Default Parameterisation

Degen(mean = 0)

Omitted Methods

N/A

Also known as

Also known as the Dirac distribution.

Super classes

distr6::Distribution -> distr6::SDistribution -> Degenerate

Public fields

name

Full name of distribution.

short_name

Short name of distribution for printing.

description

Brief description of the distribution.

Active bindings

properties

Returns distribution properties, including skewness type and symmetry.

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
Degenerate$new(mean = NULL, decorators = NULL)
Arguments
mean

numeric(1)
Mean of the distribution, defined on the Reals.

decorators

(character())
Decorators to add to the distribution during construction.


Method mean()

The arithmetic mean of a (discrete) probability distribution X is the expectation

E_X(X) = ∑ p_X(x)*x

with an integration analogue for continuous distributions.

Usage
Degenerate$mean(...)
Arguments
...

Unused.


Method mode()

The mode of a probability distribution is the point at which the pdf is a local maximum, a distribution can be unimodal (one maximum) or multimodal (several maxima).

Usage
Degenerate$mode(which = "all")
Arguments
which

(character(1) | numeric(1)
Ignored if distribution is unimodal. Otherwise "all" returns all modes, otherwise specifies which mode to return.


Method variance()

The variance of a distribution is defined by the formula

var_X = E[X^2] - E[X]^2

where E_X is the expectation of distribution X. If the distribution is multivariate the covariance matrix is returned.

Usage
Degenerate$variance(...)
Arguments
...

Unused.


Method skewness()

The skewness of a distribution is defined by the third standardised moment,

sk_X = E_X[((x - μ)/σ)^3]

where E_X is the expectation of distribution X, μ is the mean of the distribution and σ is the standard deviation of the distribution.

Usage
Degenerate$skewness(...)
Arguments
...

Unused.


Method kurtosis()

The kurtosis of a distribution is defined by the fourth standardised moment,

k_X = E_X[((x - μ)/σ)^4]

where E_X is the expectation of distribution X, μ is the mean of the distribution and σ is the standard deviation of the distribution. Excess Kurtosis is Kurtosis - 3.

Usage
Degenerate$kurtosis(excess = TRUE, ...)
Arguments
excess

(logical(1))
If TRUE (default) excess kurtosis returned.

...

Unused.


Method entropy()

The entropy of a (discrete) distribution is defined by

- ∑ (f_X)log(f_X)

where f_X is the pdf of distribution X, with an integration analogue for continuous distributions.

Usage
Degenerate$entropy(base = 2, ...)
Arguments
base

(integer(1))
Base of the entropy logarithm, default = 2 (Shannon entropy)

...

Unused.


Method mgf()

The moment generating function is defined by

mgf_X(t) = E_X[exp(xt)]

where X is the distribution and E_X is the expectation of the distribution X.

Usage
Degenerate$mgf(t, ...)
Arguments
t

(integer(1))
t integer to evaluate function at.

...

Unused.


Method cf()

The characteristic function is defined by

cf_X(t) = E_X[exp(xti)]

where X is the distribution and E_X is the expectation of the distribution X.

Usage
Degenerate$cf(t, ...)
Arguments
t

(integer(1))
t integer to evaluate function at.

...

Unused.


Method clone()

The objects of this class are cloneable with this method.

Usage
Degenerate$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

References

McLaughlin, M. P. (2001). A compendium of common probability distributions (pp. 2014-01). Michael P. McLaughlin.

See Also

Other discrete distributions: Bernoulli, Binomial, Categorical, DiscreteUniform, EmpiricalMV, Empirical, Geometric, Hypergeometric, Logarithmic, Multinomial, NegativeBinomial, WeightedDiscrete

Other univariate distributions: Arcsine, Bernoulli, BetaNoncentral, Beta, Binomial, Categorical, Cauchy, ChiSquaredNoncentral, ChiSquared, DiscreteUniform, Empirical, Erlang, Exponential, FDistributionNoncentral, FDistribution, Frechet, Gamma, Geometric, Gompertz, Gumbel, Hypergeometric, InverseGamma, Laplace, Logarithmic, Logistic, Loglogistic, Lognormal, NegativeBinomial, Normal, Pareto, Poisson, Rayleigh, ShiftedLoglogistic, StudentTNoncentral, StudentT, Triangular, Uniform, Wald, Weibull, WeightedDiscrete


distr6 documentation built on Sept. 6, 2021, 9:10 a.m.