Nothing
.add_splitting <- function(p, split.by, nrow, ncol, split.args) {
# Adds ggplot faceting to go with 'split.by' utilization.
# When split.by is length 1, the shape is controlled with ncol & nrow
if (length(split.by) == 1) {
split.args$facets <- split.by
split.args$nrow <- nrow
split.args$ncol <- ncol
return(p + do.call(facet_wrap, split.args))
}
# When split.by is length 2, the first element is used for rows, and the
# second element is used for columns.
if (length(split.by) == 2) {
split.args$rows <-
eval(expr(paste0(".data$", split.by[1], "~ .data$", split.by[2])))
return(p + do.call(facet_grid, split.args))
}
}
.remove_legend <- function(ggplot) {
# Shorthand for ggplot legend removal
ggplot + theme(legend.position = "none")
}
#' @importFrom cowplot ggdraw get_legend
.grab_legend <- function(ggplot) {
# Obtains and plots just the legend of a ggplot
cowplot::ggdraw(cowplot::get_legend(ggplot))
}
.add_letters_ellipses_labels_if_discrete <- function(
p, data, x.by, y.by, color.by,
do.letter, do.ellipse, do.label,
labels.highlight, labels.size, labels.repel, labels.split.by,
labels.repel.adjust,
letter.size, letter.opacity, letter.legend.title, letter.legend.size) {
if (!is.numeric(data[,color.by])) {
if (do.letter) {
p <- .add_letters(
p, data, x.by, y.by, color.by,
letter.size, letter.opacity, letter.legend.title, letter.legend.size)
}
if (do.ellipse) {
p <- p + stat_ellipse(
data=data,
aes(x = .data[[x.by]], y = .data[[y.by]], colour = .data[[color.by]]),
type = "t", linetype = 2, linewidth = 0.5, show.legend = FALSE, na.rm = TRUE)
}
if (do.label) {
p <- .add_labels(
p, data, color.by, x.by, y.by,
labels.highlight, labels.size, labels.repel, labels.split.by,
labels.repel.adjust)
}
} else {
# Data is incompatible, so message instead of adding.
ignored.targs <- paste(
c("do.letter", "do.ellipse", "do.label")[c(do.letter,do.ellipse,do.label)],
collapse = ", ")
.msg_if(
do.letter || do.ellipse || do.label,
ignored.targs, " was/were ignored for non-discrete data.")
}
p
}
.add_contours <- function(
p, data, x.by, y.by, color, linetype = 1) {
# Add contours based on the density of data points
# (Dim and Scatter plots)
p + geom_density_2d(
data = data,
mapping = aes(x = .data[[x.by]], y = .data[[y.by]]),
color = color,
linetype = linetype,
na.rm = TRUE)
}
.add_labels <- function(
p, Target_data, labels.by, x.by, y.by,
labels.highlight, labels.size, labels.repel, split.by,
labels.repel.adjust
) {
# Add text labels at/near the median x and y values for each group
# (Dim and Scatter plots)
# Determine medians
if (is.null(split.by)) {
median.data <- .calc_xy_medians(Target_data, labels.by, x.by, y.by)
} else if (length(split.by)==1) {
median.data <- NULL
for (level in levels(as.factor(as.character(Target_data[,split.by])))) {
level.dat <- Target_data[Target_data[,split.by]==level,]
level.med.dat <- .calc_xy_medians(level.dat, labels.by, x.by, y.by)
# Add split.by columns
level.med.dat$split1 <- level
colnames(level.med.dat)[4] <- split.by
median.data <- rbind(median.data, level.med.dat)
}
# Ensure retention of factor level ordering
median.data[,split.by] <- .retain_factor_level_order(
median.data[,split.by], possible_factor = Target_data[,split.by])
} else if (length(split.by)==2) {
median.data <- NULL
for (level1 in levels(as.factor(as.character(Target_data[,split.by[1]])))) {
for (level2 in levels(as.factor(as.character(Target_data[,split.by[2]])))) {
level.dat <- Target_data[Target_data[,split.by[1]]==level1,]
level.dat <- level.dat[level.dat[,split.by[2]]==level2,]
if (nrow(level.dat)>0) {
level.med.dat <- .calc_xy_medians(level.dat, labels.by, x.by, y.by)
# Add split.by columns
level.med.dat$split1 <- level1
level.med.dat$split2 <- level2
colnames(level.med.dat)[4:5] <- split.by
median.data <- rbind(median.data, level.med.dat)
}
}
}
# Ensure retention of factor level ordering
median.data[,split.by[1]] <- .retain_factor_level_order(
median.data[,split.by[1]], possible_factor = Target_data[,split.by[1]])
median.data[,split.by[2]] <- .retain_factor_level_order(
median.data[,split.by[2]], possible_factor = Target_data[,split.by[2]])
}
#Add labels
args <- list(
data = median.data,
mapping = aes(x = .data$cent.x, y = .data$cent.y, label = .data$label),
size = labels.size)
if (labels.repel) {
if (is.list(labels.repel.adjust)) {
args <- c(args, labels.repel.adjust)
}
geom.use <- if (labels.highlight) {
ggrepel::geom_label_repel
} else {
ggrepel::geom_text_repel
}
} else {
geom.use <- if (labels.highlight) {
geom_label
} else {
geom_text
}
}
p + do.call(geom.use, args)
}
.retain_factor_level_order <- function(new_data, possible_factor) {
if (is.factor(possible_factor)) {
factor(new_data, levels = levels(possible_factor))
} else {
new_data
}
}
.calc_xy_medians <- function(x.y.group.df, group.col, x.by, y.by) {
groups <- levels(as.factor(as.character(x.y.group.df[,group.col])))
data.frame(
cent.x = vapply(
groups,
function(level) {
median(x.y.group.df[x.y.group.df[,group.col]==level, x.by], na.rm = TRUE)
}, FUN.VALUE = numeric(1)),
cent.y = vapply(
groups,
function(level) {
median(x.y.group.df[x.y.group.df[,group.col]==level, y.by], na.rm = TRUE)
}, FUN.VALUE = numeric(1)),
label = groups)
}
.add_trajectories_by_groups <- function(
p, data, x.by, y.by, trajectories, group.by, arrow.size = 0.15) {
# Add trajectory path arrows, following sets of group-to-group paths, from group median to group median.
# (Scatter plots)
#
# p = a ggplot to add to
# data = a data_frame containing columns of x.by, y.by, and group.by
# group.by = the name of the column that holds the group.by info
# trajectories = List of lists of group-to-group paths. If relevant, equivalent to the output of SlingshotDataSet(SCE_with_slingshot)$lineages
# arrow.size = numeric scalar that sets the arrow length (in inches) at the endpoints of trajectory lines.
# Determine medians
cluster.levels <- colLevels(group.by, data)
group_medians <- .calc_xy_medians(data, group.by, x.by, y.by)
#Add trajectories
for (i in seq_along(trajectories)){
p <- p + geom_path(
data = group_medians[as.character(trajectories[[i]]),],
aes(x = .data$cent.x, y = .data$cent.y),
arrow = arrow(
angle = 20, type = "closed", length = unit(arrow.size, "inches")))
}
p
}
.add_trajectory_curves <- function(
p, trajectories, arrow.size = 0.15) {
# Add trajectory path arrows following sets of given (x,y) coordinates.
# (Dim and Scatter plots)
#
# p = a ggplot to add to
# trajectories = List of matrices (or data.frames) containing trajectory curves, all with two columns, x and y coordinates.
# arrow.size = numeric scalar that sets the arrow length (in inches) at the endpoints of trajectory lines.
# Add trajectories for general list of matrices provision method.
for (i in seq_along(trajectories)) {
data <- as.data.frame(trajectories[[i]])
names(data) <- c("x", "y")
p <- p + geom_path(
data = data,
aes(x = .data$x, y = .data$y),
arrow = arrow(
angle = 20, type = "closed", length = unit(arrow.size, "inches")))
}
p
}
.add_letters <- function(
p, Target_data, x.by, y.by, col.use = "color", size, opacity, legend.title,
legend.size) {
# Overlay letters on top of the original colored dots.
# Color blindness aid
# (Dim and Scatter plots)
letters.needed <- length(levels(as.factor(Target_data[,col.use])))
letter.labels <- c(
LETTERS, letters, 0:9, "!", "@", "#", "$", "%", "^", "&", "*", "(",
")", "-", "+", "_", "=", ";", "/", "|", "{", "}", "~"
)[seq_len(letters.needed)]
names(letter.labels) <- levels(as.factor(Target_data[,col.use]))
p <- p +
geom_point(
data=Target_data,
aes(x = .data[[x.by]], y = .data[[y.by]], shape = .data[[col.use]]),
color = "black", size=size*3/4, alpha = opacity) +
scale_shape_manual(
name = legend.title,
values = letter.labels)
p
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.