Nothing
## Compute the probabilities of generating every state, given that we
## started with one species in state 0 or state 1. For lt = length(t)
## times, returns a n(space) x lt x 2 array.
## 'scal': a multiplier to get use of extra precision (the vector
## will be scaled so that the total probability sums to
## scal. Underflow is possible where scal=1, though).
## 'tol': tolerance, used as exit condition (when changes in the
## probability space do not exceed tol, the step size is good
## enough). Lower values _may_ be faster and _may_ have
## lower accuracy (but with large numbers of clades being
## calculated, this effect can be small). It is not clear to
## me if tol should be resacled by scal before being passed
## in.
## 'm': parameter affecting internal arguments. Small numbers often
## faster, sometimes slower. Play around.
bucexp <- function(nt, la0, la1, mu0, mu1, q01, q10, t, scal=1,
tol=1e-10, m=15) {
stop("Unresolved clade calculations no longer supported (since 0.10.0)")
}
## This is more useful; given model parameters, and vectors of times
## (t), number of species in each clade (Nc), numbers of species in
## known states (nsc) and numbers of species in state b (k), calculate
## the probabilities of generating the clade, and of extinction.
## Returns a length(t) x 4 matrix, where the first two columns are the
## probabilities of generating the clade, and the second two are the
## probabilities of extinction.
bucexpl <- function(nt, la0, la1, mu0, mu1, q01, q10, t, Nc, nsc, k,
scal=1, tol=1e-10, m=15) {
stop("Unresolved clade calculations no longer supported (since 0.10.0)")
}
## Compute the PDF of the hypergeometric distribution, using the same
## parameters that Wikipedia uses, and I used in the Fortran
## function.
hyperg <- function(N, m, n, k) dhyper(k, m, N-m, n)
## The function 'bucexp.n' creates a data.frame with the number of
## species in state a, b and total for a bucexp state-space absorbing
## at n species.
bucexp.n <- function(n) {
z <- sapply(0:(n-1), seq, from=0)
n1 <- unlist(z)
n0 <- unlist(lapply(z, rev))
nt <- n0 + n1
rbind(data.frame(n0, n1, nt), c(NA, NA, n))
}
## Pack a nt x nt matrix with probabilities returned by bucexp().
## Cases where n0 + n1 > nt are given zero probabilities (or change,
## with the 'default' argument; e.g., default=NA will set them to be
## NA).
repack <- function(p, default=0) {
n <- (sqrt(8*length(p) - 7) - 1)/2
m <- matrix(default, n, n)
idx <- bucexp.n(n)
m[with(idx[-nrow(idx),]+1, cbind(n0, n1))] <- p[-length(p)]
m
}
## Given two of n0, n1 and nt, calculate the position in the state
## vector.
index <- function(n0, n1, n=n0 + n1) {
if ( missing(n1) ) n1 <- n - n0
if ( missing(n0) ) n0 <- n - n1
stopifnot(n0 + n1 == n && all(n0 >= 0) && all(n1 >= 0))
n*(n + 1)/2 + 1 + n1
}
## Construct the transition matrix. Again, non-R style, as this was
## used as a template for constructing the same in Fortran.
make.matrix <- function(nt, lambda0, lambda1, mu0, mu1, q01, q10) {
## Diagonals (are linear sums of these: -(n0*r0 + n1*r1)):
r0 <- lambda0 + mu0 + q01
r1 <- lambda1 + mu1 + q10
## A few useful numbers:
n1 <- nt*(nt-1)/2
nm <- n1 + nt + 1
## Create some useful vectors
j1 <- integer(n1)
n0 <- integer(n1)
n1 <- integer(n1)
k <- 1
for ( i in 1:(nt-1) ) {
for ( j in 1:i ) {
j1[k] <- i + k
n0[k] <- i - j + 1
n1[k] <- j
k <- k + 1
}
}
## Character state transitions and extinctions
m <- matrix(0, nm, nm)
for ( i in 1:n1 ) {
m[j1[i], i] <- n0[i]*mu0
m[j1[i]+1, i] <- n1[i]*mu1
m[j1[i], j1[i]+1] <- n0[i]*q01
m[j1[i]+1, j1[i]] <- n1[i]*q10
}
## Speciation and diagonals:
for ( i in 2:n1 ) {
if ( n0[i] > 1 )
m[i, j1[i]] <- (n0[i]-1)*lambda0
if ( n1[i] > 1 )
m[i, j1[i]+1] <- (n1[i]-1)*lambda1
m[i,i] <- - (n0[i]-1)*r0 - (n1[i]-1)*r1
}
## Speciation in the special final column, diagonals for the last
## class.
k <- nt*(nt-1)/2
for ( i in 1:nt ) {
m[k+i, nm] <- (nt-i)*lambda0 + (i-1)*lambda1
m[k+i, k+i] <- -(nt-i)*r0 - (i-1)*r1
}
m
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.