Nothing
## ----setup, message=FALSE, echo=FALSE-----------------------------------------
reset_options_scipen <- getOption("scipen")
reset_options_digits <- getOption("digits")
options(scipen = 1, digits = 5)
library(dnapath)
set.seed(12345)
## -----------------------------------------------------------------------------
data(meso)
str(meso)
## ----warning=FALSE------------------------------------------------------------
# Run dnapath using the gene expression and group information from meso dataset.
results <- dnapath(meso$gene_expression,
pathway_list = NULL,
group_labels = meso$groups)
results
## -----------------------------------------------------------------------------
plot(results, alpha = 0.05, only_dc = TRUE)
## -----------------------------------------------------------------------------
data(meso) # Load the gene expression data
data(p53_pathways)
# Run the differential network analysis.
results <- dnapath(x = meso$gene_expression,
pathway_list = p53_pathways,
group_labels = meso$groups,
seed = 0)
results
## -----------------------------------------------------------------------------
results <- filter_pathways(results, alpha_pathway = 0.1)
results
## -----------------------------------------------------------------------------
results <- sort(results, decreasing = TRUE, by = "n_dc")
results
## -----------------------------------------------------------------------------
# The plot layout is stochastic. Setting the RNG seed allows for reproducible plots.
set.seed(0)
plot(results[[1]], alpha = 0.05, only_dc = TRUE)
## -----------------------------------------------------------------------------
results <- rename_genes(results, to = "symbol", species = "human",
dir_save = tempdir())
results[[1]] # Print the results for the first pathway.
## -----------------------------------------------------------------------------
set.seed(0) # Reset seed to use same layout as previous plot.
plot(results[[1]], alpha = 0.05, only_dc = TRUE)
## -----------------------------------------------------------------------------
# Summary table of the edges in pathway 1.
summarize_edges(results[[1]], alpha = 0.05)
## -----------------------------------------------------------------------------
library(dplyr)
tab <- summarize_edges(results[[1]])
tab <- dplyr::arrange(tab, p_value, decreasing = FALSE)
tab <- dplyr::filter(tab, pmax(abs(nw1), abs(nw2)) > 0.2)
tab
## -----------------------------------------------------------------------------
plot_pair(results, "BANP", "TP53")
## -----------------------------------------------------------------------------
plot_pair(results, "BANP", "TP53", method = "lm")
## -----------------------------------------------------------------------------
set.seed(0) # Reset seed to use same layout as previous plot.
plot(results[[1]], alpha = 0.05, only_dc = TRUE, require_dc_genes = TRUE)
summarize_edges(results[[1]], alpha = 0.05, require_dc_genes = TRUE)
## -----------------------------------------------------------------------------
set.seed(0) # Reset seed to use same layout as previous plot.
plot(results[[1]], alpha = 0.05)
## ----echo=FALSE---------------------------------------------------------------
options(scipen = reset_options_scipen, digits = reset_options_digits)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.