Nothing
#' Discriminative parameter learning of BN by L-SHADE.
#'
#' Learn parameters of a Bayesian Network in a discriminative way
#' by Success-History based Adaptive Differential evolution with
#' a Linear Population Size Reduction
#'
#' @name lshade
#'
#' @param NP positive integer giving the number of candidate solutions in the initial population.
#' @param G positive integer specifying the maximum number of generations that may be performed before the algorithm is halted.
#' @param data The data frame from which to learn the classifier.
#' @param class.name A character. Name of the class variable.
#' @param c Numeric. An adaptation parameter. Default is 0.1.
#' @param structure A character. Name of the structure learning function. "tan" uses Tree Augmented Network.
#' "nb" uses Naive Bayes. "hc" uses Hill Climbing.
#' @param pB Numeric. JADE mutation strategy.
#' @param edgelist A matrix. An optional edge list to use a custom BN structure
#' that will replace de learned structure.
#' @param verbose positive integer indicating the number of generations until the iteration progress should be printed.
#' @param ... other structure learning options from \link[bnclassify]{tan_cl} or \link[bnclassify]{tan_hc}.
#'
#' @export
#' @return An object of class \code{DE}, which is a list with the following components:
#' \item{Best}{A \code{bnc_bn} object with the best individual in the final population, i.e., the bayesian network with the best fitness at the end of evolution.}
#' \item{BestCLL}{A numeric specifying the Conditional Log-Likelihood of the best individual.}
#' \item{pobFinal}{A list of \code{bnc_bn} objects with the final population, i.e., a set of bayesian networks with optimized parameters at the end of evolution.}
#' \item{CLLPobFinal}{A numeric vector specifying the Conditional Log-Likelihood of the final population.}
#' \item{N.evals}{An integer giving the total number of evaluations.}
#' \item{convergence}{A numeric vector giving the maximum Conditional Log-Likelihood at each generation.}
#' \item{evaluations}{An integer vector giving the total number of evaluations at each generation.}
#'
#' @examples
#' # Load data
#' data(car)
#' # Parameter learning with "LSHADE" variant
#' dpl.lshade <- lshade(NP = 40, G = 50, data = car, class.name = names(car)[7], c = 0.1,
#' structure = "tan", pB = 0.05, edgelist = NULL, verbose = 5)
#' # Print results
#' print(dpl.lshade)
#' \dontrun{plot(dpl.lshade)}
lshade <- function(NP = 40, G = 100, data, class.name, c = 0.1, structure = c("nb", "tancl", "hc"),
pB = 0.05, edgelist = NULL, verbose = 25, ...){
if (NP <= 5){
warning("'NP' <= 5; set to default value 40\n", immediate. = TRUE)
NP <- 40
}
if (G <= 1){
warning("'G' <= 1; set to default value 100\n", immediate. = TRUE)
G <- 100
}
if (c < 0 || c > 0.2){
warning("'c' not in [0, 0.2]; set to default value 0.1\n", immediate. = TRUE)
c <- 0.1
}
if (pB <= 0 || pB > 1){
warning("'pB' not in (0, 1]; set to default value 0.05\n", immediate. = TRUE)
pB <- 0.1
}
neval <- 0
record_CLL <- c()
record_evals <- c()
# Algorithm to learn structure
if(!is.null(structure)){
structure <- "nb"
}
structure <- match.arg(structure)
if (structure == "tancl"){
bn <- bnclassify::tan_cl(class.name, data, ...)
}else if(structure == "hc"){
bn <- bnclassify::tan_hc(class.name, data, ...)
} else {
bn <- bnclassify::nb(class.name, data)
}
# To replace BN structure from adjacency list (if provided)
if (!is.null(edgelist)){
bn[[2]][[2]] <- edgelist
bn[[4]][[1]] <- "tan_cl"
# Make families
df <- as.data.frame(edgelist)
unique_nodes <- unique(c(df$from, df$to))
unique_nodes <- unique_nodes[order(unique_nodes != class.name, decreasing = TRUE)]
families <- lapply(unique_nodes, function(node) get_family(node, df, class.name))
names(families) <- unique_nodes
bn[[3]] <- families
}
# Start CPTs
Z <- bnclassify::lp(bn, data, smooth = 0.01)
W <- length(Z$.params)
X <- lapply(Z$.params, dim)
Y <- sapply(Z$.params, length)
dim <- sum(unlist(Y))
COL <- strRep(X)
# Differential Evolution
# Terminal value
terminal <- 0
# Number of slots in M_CR and M_F memories
H <- 6
# index of historical memory
ki <- 1
# Starts population
pop <- population(NP, W, X, Y, Z)
# Fitness evaluation
CLL <- function(net) bnclassify::cLogLik(net, data)
fitness <- unlist(lapply(pop, CLL))
neval <- neval + NP
record_evals <- c(neval)
best_idx <- which.max(fitness)
best <- pop[[best_idx]]
record_CLL <- c(record_CLL, fitness[best_idx])
# Default muCR y muF
mCR <- rep(0.5, H); mF <- mCR
# Starts Archive
Archive <- list()
# p-best individuals to choose
pBest <- NP * pB
# Max number of evaluations
MAX_NFE <- G * NP
# Minimal number of individuals for mutation strategy
N.min <- 4
# Size of initial population
N.init <- NP
# Linear Population Size Reduction formula
LPSR.1 <- (N.min - N.init) / MAX_NFE
# Number of fitness evaluation done
NFE <- NP
for(i in seq_len(G)){
SF <- c(); SCR <- c()
improvement <- c()
for(j in seq_len(NP)){
ri <- sample.int(H, 1)
if (mCR[ri] == terminal){
CR <- 0
}else{
CR <- randN(1, mCR[ri]);
}
F <- randC(1, mF[ri])
### rand/1
idxs <- seq_len(NP)[-j]
idrs <- seq_len(NP + length(Archive))[-j]
idbs <- getPBest(fitness, pBest)
xi <- pop[[j]]
xp <- pop[[sample(idbs, 1)]]
r1 <- pop[[sample(idxs, 1)]]
r2 <- c(pop, Archive)[[sample(idrs, 1)]]
# mutant vector
mutant <- vec(xi$.params) + F * (vec(xp$.params) - vec(xi$.params)) + F * (vec(r1$.params) - vec(r2$.params))
# Repair 1
mutant <- reflect(mutant)
### /bin
cross_points <- runif(dim) > CR
if(!all(cross_points)){
cross_points[sample(1:dim, 1)] <- TRUE
}
trial <- vec(pop[[j]]$.params);
trial[cross_points] <- mutant[cross_points] # Cross Over
# Repair 2
trial <- keepSum(trial, COL)
trial <- vec2net(trial, W, X, Y, Z)
f <- CLL(trial)
neval <- neval + 1
NFE <- NFE + 1
if(f > fitness[j]){
improvement <- c(improvement, abs(f - fitness[j]))
fitness[j] <- f
Archive <- c(Archive, pop[j])
pop[[j]] <- trial
SCR <- c(SCR, CR); SF <- c(SF, F)
if(f > fitness[best_idx]){
best_idx <- j
best <- trial
} # end if
} # end if
} # end j loop (NP)
record_CLL <- c(record_CLL, fitness[best_idx])
record_evals <- c(record_evals, neval)
# At random removes solutions from A, |A| <= NP
Archive <- Archive[sample(seq_len(length(Archive)), min(length(Archive), NP))]
# Updates mCR and mF values
if (length(SCR) > 0 && length(SF) > 0){
if (mCR[ki] == terminal || max(SCR) ==0){
mCR[ki] <- terminal
}else{
mCR[ki] <- meanWL(SCR, improvement)
}
mF[ki] <- meanWL(SF, improvement)
ki <- ki + 1
if (ki > H){
ki <- 1
}
}else{
mCR[ki] <- mCR[ki]
mF[ki] <- mF[ki]
}
# LPSR strategy
New.NP <- round(LPSR.1 * NFE + N.init, 0)
if (NP > New.NP ){
pop <- pop[c(order(fitness, decreasing = TRUE))]
fitness <- fitness[order(fitness, decreasing = TRUE)]
pop <- pop[1:New.NP]
fitness <- fitness[1:New.NP]
best_idx <- 1
best <- pop[[best_idx]]
Archive <- Archive[sample(seq_len(length(Archive)), min(length(Archive), New.NP))]
NP <- New.NP
}
# Print best fitness each verbose generations
if (verbose > 0 && (i %% verbose) == 0){
cat("Gen: ", i, "\t CLL= ", fitness[best_idx], "\t NP= ", NP, "\n")
}
} # end i loop (Generations)
outDE <- list(Best = best,
BestCLL = fitness[best_idx],
pobFinal = pop,
CLLPobFinal = fitness,
N.evals = neval,
convergence = record_CLL,
evaluations = record_evals)
attr(outDE, "class") <- "DE"
outDE
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.