group_by_all: Group by a selection of variables

Description Usage Arguments Grouping variables Examples

View source: R/colwise-group-by.R

Description

\Sexpr[results=rd, stage=render]{lifecycle::badge("superseded")}

Scoped verbs (_if, _at, _all) have been superseded by the use of across() in an existing verb. See vignette("colwise") for details.

These scoped variants of group_by() group a data frame by a selection of variables. Like group_by(), they have optional mutate semantics.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
group_by_all(
  .tbl,
  .funs = list(),
  ...,
  .add = FALSE,
  .drop = group_by_drop_default(.tbl)
)

group_by_at(
  .tbl,
  .vars,
  .funs = list(),
  ...,
  .add = FALSE,
  .drop = group_by_drop_default(.tbl)
)

group_by_if(
  .tbl,
  .predicate,
  .funs = list(),
  ...,
  .add = FALSE,
  .drop = group_by_drop_default(.tbl)
)

Arguments

.tbl

A tbl object.

.funs

A function fun, a quosure style lambda ~ fun(.) or a list of either form.

...

Additional arguments for the function calls in .funs. These are evaluated only once, with tidy dots support.

.add

See group_by()

.drop

Drop groups formed by factor levels that don't appear in the data? The default is TRUE except when .data has been previously grouped with .drop = FALSE. See group_by_drop_default() for details.

.vars

A list of columns generated by vars(), a character vector of column names, a numeric vector of column positions, or NULL.

.predicate

A predicate function to be applied to the columns or a logical vector. The variables for which .predicate is or returns TRUE are selected. This argument is passed to rlang::as_function() and thus supports quosure-style lambda functions and strings representing function names.

Grouping variables

Existing grouping variables are maintained, even if not included in the selection.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# Group a data frame by all variables:
group_by_all(mtcars)
# ->
mtcars %>% group_by(across())

# Group by variables selected with a predicate:
group_by_if(iris, is.factor)
# ->
iris %>% group_by(across(where(is.factor)))

# Group by variables selected by name:
group_by_at(mtcars, vars(vs, am))
# ->
mtcars %>% group_by(across(c(vs, am)))

# Like group_by(), the scoped variants have optional mutate
# semantics. This provide a shortcut for group_by() + mutate():
d <- tibble(x=c(1,1,2,2), y=c(1,2,1,2))
group_by_all(d, as.factor)
# ->
d %>% group_by(across(everything(), as.factor))

group_by_if(iris, is.factor, as.character)
# ->
iris %>% group_by(across(where(is.factor), as.character))

Example output

Attaching package:dplyrThe following objects are masked frompackage:stats:

    filter, lag

The following objects are masked frompackage:base:

    intersect, setdiff, setequal, union

# A tibble: 32 x 11
# Groups:   mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb [32]
     mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1  21       6  160    110  3.9   2.62  16.5     0     1     4     4
 2  21       6  160    110  3.9   2.88  17.0     0     1     4     4
 3  22.8     4  108     93  3.85  2.32  18.6     1     1     4     1
 4  21.4     6  258    110  3.08  3.22  19.4     1     0     3     1
 5  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2
 6  18.1     6  225    105  2.76  3.46  20.2     1     0     3     1
 7  14.3     8  360    245  3.21  3.57  15.8     0     0     3     4
 8  24.4     4  147.    62  3.69  3.19  20       1     0     4     2
 9  22.8     4  141.    95  3.92  3.15  22.9     1     0     4     2
10  19.2     6  168.   123  3.92  3.44  18.3     1     0     4     4
# … with 22 more rows
# A tibble: 32 x 11
# Groups:   mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear, carb [32]
     mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1  21       6  160    110  3.9   2.62  16.5     0     1     4     4
 2  21       6  160    110  3.9   2.88  17.0     0     1     4     4
 3  22.8     4  108     93  3.85  2.32  18.6     1     1     4     1
 4  21.4     6  258    110  3.08  3.22  19.4     1     0     3     1
 5  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2
 6  18.1     6  225    105  2.76  3.46  20.2     1     0     3     1
 7  14.3     8  360    245  3.21  3.57  15.8     0     0     3     4
 8  24.4     4  147.    62  3.69  3.19  20       1     0     4     2
 9  22.8     4  141.    95  3.92  3.15  22.9     1     0     4     2
10  19.2     6  168.   123  3.92  3.44  18.3     1     0     4     4
# … with 22 more rows
# A tibble: 150 x 5
# Groups:   Species [3]
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
          <dbl>       <dbl>        <dbl>       <dbl> <fct>  
 1          5.1         3.5          1.4         0.2 setosa 
 2          4.9         3            1.4         0.2 setosa 
 3          4.7         3.2          1.3         0.2 setosa 
 4          4.6         3.1          1.5         0.2 setosa 
 5          5           3.6          1.4         0.2 setosa 
 6          5.4         3.9          1.7         0.4 setosa 
 7          4.6         3.4          1.4         0.3 setosa 
 8          5           3.4          1.5         0.2 setosa 
 9          4.4         2.9          1.4         0.2 setosa 
10          4.9         3.1          1.5         0.1 setosa 
# … with 140 more rows
# A tibble: 150 x 5
# Groups:   Species [3]
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
          <dbl>       <dbl>        <dbl>       <dbl> <fct>  
 1          5.1         3.5          1.4         0.2 setosa 
 2          4.9         3            1.4         0.2 setosa 
 3          4.7         3.2          1.3         0.2 setosa 
 4          4.6         3.1          1.5         0.2 setosa 
 5          5           3.6          1.4         0.2 setosa 
 6          5.4         3.9          1.7         0.4 setosa 
 7          4.6         3.4          1.4         0.3 setosa 
 8          5           3.4          1.5         0.2 setosa 
 9          4.4         2.9          1.4         0.2 setosa 
10          4.9         3.1          1.5         0.1 setosa 
# … with 140 more rows
# A tibble: 32 x 11
# Groups:   vs, am [4]
     mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1  21       6  160    110  3.9   2.62  16.5     0     1     4     4
 2  21       6  160    110  3.9   2.88  17.0     0     1     4     4
 3  22.8     4  108     93  3.85  2.32  18.6     1     1     4     1
 4  21.4     6  258    110  3.08  3.22  19.4     1     0     3     1
 5  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2
 6  18.1     6  225    105  2.76  3.46  20.2     1     0     3     1
 7  14.3     8  360    245  3.21  3.57  15.8     0     0     3     4
 8  24.4     4  147.    62  3.69  3.19  20       1     0     4     2
 9  22.8     4  141.    95  3.92  3.15  22.9     1     0     4     2
10  19.2     6  168.   123  3.92  3.44  18.3     1     0     4     4
# … with 22 more rows
# A tibble: 32 x 11
# Groups:   vs, am [4]
     mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1  21       6  160    110  3.9   2.62  16.5     0     1     4     4
 2  21       6  160    110  3.9   2.88  17.0     0     1     4     4
 3  22.8     4  108     93  3.85  2.32  18.6     1     1     4     1
 4  21.4     6  258    110  3.08  3.22  19.4     1     0     3     1
 5  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2
 6  18.1     6  225    105  2.76  3.46  20.2     1     0     3     1
 7  14.3     8  360    245  3.21  3.57  15.8     0     0     3     4
 8  24.4     4  147.    62  3.69  3.19  20       1     0     4     2
 9  22.8     4  141.    95  3.92  3.15  22.9     1     0     4     2
10  19.2     6  168.   123  3.92  3.44  18.3     1     0     4     4
# … with 22 more rows
# A tibble: 4 x 2
# Groups:   x, y [4]
  x     y    
  <fct> <fct>
1 1     1    
2 1     2    
3 2     1    
4 2     2    
# A tibble: 4 x 2
# Groups:   x, y [4]
  x     y    
  <fct> <fct>
1 1     1    
2 1     2    
3 2     1    
4 2     2    
# A tibble: 150 x 5
# Groups:   Species [3]
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
          <dbl>       <dbl>        <dbl>       <dbl> <chr>  
 1          5.1         3.5          1.4         0.2 setosa 
 2          4.9         3            1.4         0.2 setosa 
 3          4.7         3.2          1.3         0.2 setosa 
 4          4.6         3.1          1.5         0.2 setosa 
 5          5           3.6          1.4         0.2 setosa 
 6          5.4         3.9          1.7         0.4 setosa 
 7          4.6         3.4          1.4         0.3 setosa 
 8          5           3.4          1.5         0.2 setosa 
 9          4.4         2.9          1.4         0.2 setosa 
10          4.9         3.1          1.5         0.1 setosa 
# … with 140 more rows
# A tibble: 150 x 5
# Groups:   Species [3]
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
          <dbl>       <dbl>        <dbl>       <dbl> <chr>  
 1          5.1         3.5          1.4         0.2 setosa 
 2          4.9         3            1.4         0.2 setosa 
 3          4.7         3.2          1.3         0.2 setosa 
 4          4.6         3.1          1.5         0.2 setosa 
 5          5           3.6          1.4         0.2 setosa 
 6          5.4         3.9          1.7         0.4 setosa 
 7          4.6         3.4          1.4         0.3 setosa 
 8          5           3.4          1.5         0.2 setosa 
 9          4.4         2.9          1.4         0.2 setosa 
10          4.9         3.1          1.5         0.1 setosa 
# … with 140 more rows

dplyr documentation built on June 19, 2021, 1:07 a.m.