Nothing
#' Compute confidence interval/s for the Mann-Whitney parameter
#'
#' @param out A \code{numeric} vector containing the outcomes. Missing outcomes are
#' allowed.
#' @param treat A \code{numeric} vector containing treatment status. Missing
#' values are not allowed unless the corresponding entry in \code{out} is also missing.
#' Only values of 0 or 1 are treated as actual treatment levels. Any other value is assumed
#' to encode a value for which the outcome is missing and the corresponding outcome value is
#' ignored.
#' @param covar A \code{data.frame} containing the covariates to include in the working
#' proportional odds model.
#' @param mannwhitney_est The point estimates for log-odds.
#' @param pmf_est The estimated conditional PMF.
#' @param cdf_est The estimated conditional CDF.
#' @param alpha Confidence intervals have nominal level 1-\code{alpha}.
#' @param out_levels A \code{numeric} vector containing all ordered levels of the
#' outcome.
#' @param out_form The right-hand side of a regression formula for the working proportional
#' odds model. NOTE: THIS FORMULA MUST NOT SUPPRESS THE INTERCEPT.
#' @param out_model Which R function should be used to fit the proportional odds
#' model. Options are \code{"polr"} (from the \code{MASS} package),
#' "vglm" (from the \code{VGAM} package), or \code{"clm"} (from the \code{ordinal} package).
#' @param treat_form The right-hand side of a regression formula for the working model of
#' treatment probability as a function of covariates
#' @param ci A vector of \code{characters} indicating which confidence intervals
#' should be computed (\code{"bca"} and/or \code{"wald"})
#' @param nboot Number of bootstrap replicates used to compute bootstrap confidence
#' intervals.
#' @param treat_prob_est Estimated probability of treatments, output from call
#' to \code{estimate_treat_prob}.
#' @return List with \code{wald} and \code{bca}-estimated confidence intervals
#' for the Mann-Whitney parameter.
#'
estimate_ci_mannwhitney <- function(
mannwhitney_est, cdf_est, pmf_est, treat_prob_est, treat_form, out_form,
treat, ci, out, alpha, nboot, out_levels, covar, out_model
){
n <- length(out)
if("wald" %in% ci){
# get big influence function matrix
eif_F_0 <- evaluate_trt_spec_theta_eif(
trt_spec_cdf_est = cdf_est[[2]],
trt_spec_prob_est = treat_prob_est[[2]],
trt_level = 0, treat = treat, out = out,
out_levels = out_levels
)
eif_f_01_list <- mapply(trt_spec_pmf_est = pmf_est,
trt_spec_prob_est = treat_prob_est, trt_level = list(1,0),
FUN = evaluate_trt_spec_pmf_eif,
MoreArgs = list(treat = treat, out = out, out_levels = out_levels),
SIMPLIFY = FALSE)
eif_f_01 <- Reduce(cbind, eif_f_01_list)
eif_matrix <- cbind(eif_F_0, eif_f_01)
cov_matrix <- cov(eif_matrix)
gradient <- evaluate_mannwhitney_gradient(cdf_est = cdf_est, pmf_est = pmf_est)
se_est_mannwhitney_est <- sqrt(t(gradient) %*% cov_matrix %*% gradient / n)
wald_ci <- mannwhitney_est + qnorm(c(alpha/2, 1 - alpha/2)) * c(se_est_mannwhitney_est)
}else{
wald_ci <- NULL
}
if("bca" %in% ci){
bca_ci <- bca_mannwhitney(treat = treat, covar = covar,
out = out, nboot = nboot,
treat_form = treat_form,
out_levels = out_levels,
out_form = out_form,
mannwhitney_est = mannwhitney_est,
alpha = alpha,
out_model = out_model)
}else{
bca_ci <- NULL
}
return(list(wald = wald_ci, bca = bca_ci))
}
#' Compute a BCa bootstrap confidence interval for the Mann-Whitney parameter. The code is
#' based on the slides found here: http://users.stat.umn.edu/~helwig/notes/bootci-Notes.pdf
#'
#' @param out A \code{numeric} vector containing the outcomes. Missing outcomes are
#' allowed.
#' @param treat A \code{numeric} vector containing treatment status. Missing
#' values are not allowed unless the corresponding entry in \code{out} is also missing.
#' Only values of 0 or 1 are treated as actual treatment levels. Any other value is assumed
#' to encode a value for which the outcome is missing and the corresponding outcome value is
#' ignored.
#' @param covar A \code{data.frame} containing the covariates to include in the working
#' proportional odds model.
#' @param nboot Number of bootstrap replicates used to compute bootstrap confidence
#' intervals.
#' @param treat_form The right-hand side of a regression formula for the working model of
#' treatment probability as a function of covariates
#' @param out_levels A \code{numeric} vector containing all ordered levels of the
#' outcome.
#' @param out_form The right-hand side of a regression formula for the working proportional
#' odds model. NOTE: THIS FORMULA MUST NOT SUPPRESS THE INTERCEPT.
#' @param out_model Which R function should be used to fit the proportional odds
#' model. Options are \code{"polr"} (from the \code{MASS} package),
#' "vglm" (from the \code{VGAM} package), or \code{"clm"} (from the \code{ordinal} package).
#' @param mannwhitney_est The point estimate of the Mann-Whitney parameter.
#' @param alpha Level of confidence interval.
#' @return Confidence interval for the Mann-Whitney parameter
bca_mannwhitney <- function(treat, covar, out, nboot,
treat_form, out_levels, out_form,
mannwhitney_est,
out_model, alpha = 0.05){
boot_samples <- replicate(nboot,
one_boot_mannwhitney(treat = treat,
covar = covar,
out = out,
treat_form = treat_form,
out_levels = out_levels,
out_form = out_form,
out_model = out_model))
jack_samples <- jack_mannwhitney(treat = treat,
covar = covar,
out = out,
treat_form = treat_form,
out_levels = out_levels,
out_form = out_form,
out_model = out_model)
bca_ci_mannwhitney <- bca_interval(pt_est = mannwhitney_est,
boot_samples = boot_samples,
jack_samples = jack_samples,
alpha = alpha)
return(rbind(bca_ci_mannwhitney))
}
#' Compute Mann-Whitney log-odds estimates.
#' @param out A \code{numeric} vector containing the outcomes. Missing outcomes are
#' allowed.
#' @param treat A \code{numeric} vector containing treatment status. Missing
#' values are not allowed unless the corresponding entry in \code{out} is also missing.
#' Only values of 0 or 1 are treated as actual treatment levels. Any other value is assumed
#' to encode a value for which the outcome is missing and the corresponding outcome value is
#' ignored.
#' @param covar A \code{data.frame} containing the covariates to include in the working
#' proportional odds model.
#' @param treat_form The right-hand side of a regression formula for the working model of
#' treatment probability as a function of covariates
#' @param out_levels A \code{numeric} vector containing all ordered levels of the
#' outcome.
#' @param out_form The right-hand side of a regression formula for the working proportional
#' odds model. NOTE: THIS FORMULA MUST NOT SUPPRESS THE INTERCEPT.
#' @param out_model Which R function should be used to fit the proportional odds
#' model. Options are \code{"polr"} (from the \code{MASS} package),
#' "vglm" (from the \code{VGAM} package), or \code{"clm"} (from the \code{ordinal} package).
#' @return Jackknife estimate of Mann-Whitney parameter
jack_mannwhitney <- function(treat, covar, out, treat_form, out_levels, out_form,
out_model){
mannwhitney_jack_est <- sapply(seq_along(out), function(i){
mannwhitney_minusi <- get_one_mannwhitney(treat = treat[-i],
covar = covar[-i, , drop = FALSE],
out = out[-i],
treat_form = treat_form,
out_levels = out_levels,
out_form = out_form,
out_model = out_model)
return(mannwhitney_minusi)
})
return(mannwhitney_jack_est)
}
#' Get one bootstrap computation of the Mann-Whitney parameter.
#'
#' @param out A \code{numeric} vector containing the outcomes. Missing outcomes are
#' allowed.
#' @param treat A \code{numeric} vector containing treatment status. Missing
#' values are not allowed unless the corresponding entry in \code{out} is also missing.
#' Only values of 0 or 1 are treated as actual treatment levels. Any other value is assumed
#' to encode a value for which the outcome is missing and the corresponding outcome value is
#' ignored.
#' @param covar A \code{data.frame} containing the covariates to include in the working
#' proportional odds model.
#' @param treat_form The right-hand side of a regression formula for the working model of
#' treatment probability as a function of covariates
#' @param out_levels A \code{numeric} vector containing all ordered levels of the
#' outcome.
#' @param out_form The right-hand side of a regression formula for the working proportional
#' odds model. NOTE: THIS FORMULA MUST NOT SUPPRESS THE INTERCEPT.
#' @param out_model Which R function should be used to fit the proportional odds
#' model. Options are \code{"polr"} (from the \code{MASS} package),
#' "vglm" (from the \code{VGAM} package), or \code{"clm"} (from the \code{ordinal} package).
#' @return Estimates of Mann-Whitney parameter for a particular bootstrap sample.
one_boot_mannwhitney <- function(treat, covar, out, treat_form, out_levels, out_form,
out_model){
boot_idx <- sample(seq_along(out), replace = TRUE)
mannwhitney_boot_est <- tryCatch({get_one_mannwhitney(treat = treat[boot_idx],
covar = covar[boot_idx, , drop = FALSE],
out = out[boot_idx],
treat_form = treat_form,
out_levels = out_levels,
out_model = out_model,
out_form = out_form)}, error = function(e){
NA
})
return(mannwhitney_boot_est)
}
#' Compute one estimate of Mann-Whitney parameter based on a given data set.
#'
#' @param out A \code{numeric} vector containing the outcomes. Missing outcomes are
#' allowed.
#' @param treat A \code{numeric} vector containing treatment status. Missing
#' values are not allowed unless the corresponding entry in \code{out} is also missing.
#' Only values of 0 or 1 are treated as actual treatment levels. Any other value is assumed
#' to encode a value for which the outcome is missing and the corresponding outcome value is
#' ignored.
#' @param covar A \code{data.frame} containing the covariates to include in the working
#' proportional odds model.
#' @param treat_form The right-hand side of a regression formula for the working model of
#' treatment probability as a function of covariates
#' @param out_levels A \code{numeric} vector containing all ordered levels of the
#' outcome.
#' @param out_form The right-hand side of a regression formula for the working proportional
#' odds model. NOTE: THIS FORMULA MUST NOT SUPPRESS THE INTERCEPT.
#' @param out_model Which R function should be used to fit the proportional odds
#' model. Options are \code{"polr"} (from the \code{MASS} package),
#' "vglm" (from the \code{VGAM} package), or \code{"clm"} (from the \code{ordinal} package).
#' @return Estimate of Mann-Whitney parameter for these input data.
get_one_mannwhitney <- function(treat, covar, treat_form,
out, out_levels, out_form,
out_model){
# obtain estimate of treatment probabilities
treat_prob_fit <- estimate_treat_prob(treat = treat,
covar = covar,
treat_form = treat_form,
return_models = FALSE)
treat_prob_est <- treat_prob_fit$gn
# obtain estimate of conditional PMF for each treatment level
pmf_fit <- estimate_pmf(out = out, treat = treat,
covar = covar, out_levels = out_levels,
out_form = out_form, treat_prob_est = treat_prob_est,
out_model = out_model,
return_models = FALSE)
pmf_est <- pmf_fit$pmf
cdf_est <- estimate_cdf(pmf_est = pmf_est)
mannwhitney_est <- estimate_mannwhitney(cdf_est = cdf_est, pmf_est = pmf_est)
return(mannwhitney_est)
}
#' Compute the estimated gradient of the Mann-Whitney parameter. Needed to derive
#' standard error for Wald confidence intervals.
#' @param cdf_est Conditional CDF estimates
#' @param pmf_est Conditional PMF estimates
#' @return 3-length vector for delta method calculus
evaluate_mannwhitney_gradient <- function(cdf_est, pmf_est){
K <- ncol(cdf_est[[1]])
# get marginal CDF
F_1 <- colMeans(cdf_est[[1]])
F_0 <- colMeans(cdf_est[[2]])
# get marginal PDF
f_1 <- colMeans(pmf_est[[1]])
f_0 <- colMeans(pmf_est[[1]])
# F(k-1 | A = 0), k = 0, ..., K
F_0_kminus1 <- c(0, F_0[-K])
gradient <- c(
f_1[-1],
F_0_kminus1 + 1/2 * f_0,
1/2 * f_1
)
return(gradient)
}
#' Compute the estimate of Mann-Whitney based on conditional CDF and PMF
#' @param cdf_est Conditional CDF estimates
#' @param pmf_est Conditional PMF estimates
#' @return Mann-Whitney point estimate
estimate_mannwhitney <- function(cdf_est, pmf_est){
K <- ncol(cdf_est[[1]])
# get marginal CDF
F_1 <- colMeans(cdf_est[[1]])
F_0 <- colMeans(cdf_est[[2]])
# get marginal PDF
f_1 <- colMeans(pmf_est[[1]])
f_0 <- colMeans(pmf_est[[2]])
# F(k-1 | A = 0), k = 0, ..., K
F_0_kminus1 <- c(0, F_0[-K])
# estimate
mannwhitney_est <- sum((F_0_kminus1 + 1/2 * f_0) * f_1)
return(mannwhitney_est)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.