checkPara: Check Parameter Values

Description Usage Arguments Details Value Author(s) References Examples

View source: R/paraTransform.R

Description

Check if parameter values satisfy constraints.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
checkPara(
  mu1, 
  k1, 
  alpha1, 
  beta1, 
  mu2, 
  k2, 
  alpha2, 
  beta2, 
  alpha3, 
  beta3, 
  c1 = qnorm(0.95), 
  c2 = qnorm(0.05))

Arguments

mu1

mean of the mean expression levels for gene probes in cluster 1 (over-expressed probes).

k1

scalar in the variance of the mean expression levles for gene probes in cluster 1 (over-expressed probes).

alpha1

shape parameter of the distribution of the variance of gene expression levels for gene probes in cluster 1 (over-expressed probes).

beta1

rate parameter of the distribution of the variance of gene expression levels for gene probes in cluster 1 (over-expressed probes).

mu2

mean of the mean expression levels for gene probes in cluster 2 (under-expressed probes).

k2

scalar in the variance of the mean expression levles for gene probes in cluster 2 (under-expressed probes).

alpha2

shape parameter of the distribution of the variance of gene expression levels for gene probes in cluster 2 (under-expressed probes).

beta2

rate parameter of the distribution of the variance of gene expression levels for gene probes in cluster 2 (under-expressed probes).

alpha3

shape parameter of the distribution of the variance of gene expression levels for gene probes in cluster 3 (non-differentially expressed probes).

beta3

rate parameter of the distribution of the variance of gene expression levels for gene probes in cluster 3 (non-differentially expressed probes).

c1

the lower bound for mu_g/sqrt(tau_g^{-1}) for cluster 1 (over-expressed probes). By default c_1=Phi^{-1}(0.95).

c2

the upper bound for mu_g/sqrt(tau_g^{-1}) for cluster 2 (under-expressed probes). By default c_2=Phi^{-1}(0.05).

Details

We assume the following the Bayesian hierarchical models for the 3 clusters of gene probes.

For cluster 1 (over-expressed gene probes):

d_{gl} | (mu_g, tau_g) ~ N(mu_g, tau_g^{-1}),\ mu_g | tau_g ~ N(mu_1, k_1 tau_g^{-1}),\ tau_g ~ Gamma(alpha_1, beta_1).

For cluster 2 (under-expressed gene probes):

d_{gl} | (mu_g, tau_g) ~ N(mu_g, tau_g^{-1}),\ mu_g | tau_g ~ N(mu_2, k_2 tau_g^{-1}),\ tau_g ~ Gamma(alpha_2, beta_2).

For cluster 3 (non-differentially-expressed gene probes):

d_{gl} | (mu_g, tau_g) ~ N(0m, tau_g^{-1}),\ tau_g ~ Gamma(alpha_3, beta_3).

For cluster 1, we add one constraint

alpha_1>1+beta_1( (c_1-Phi^{-1}(0.05)sqrt{k_1})/mu_1 \right)^2

based on

Pr(mu_g/tau_g^{-1} <= c_1 | tau_g^{-1})<0.05,

where c_1=Phi^{-1}(0.05) and Phi is the cumulative distribution function of the standard normal distribution.

For cluster 2, we add one constraint

alpha_2>1+beta_2( (c_2-Phi^{-1}(0.95)sqrt{k_2})/mu_2 \right)^2

based on

Pr(mu_g/tau_g^{-1} >= c_2 | tau_g^{-1})<0.05,

where c_2=Phi^{-1}(0.95) and Phi is the cumulative distribution function of the standard normal distribution.

To do unconstraint numerical optimization, we do parameter reparameterization:

mu_1=exp(delta_1), k_1=Phi(xi_1), beta_1=exp(nu_1),\ alpha_1=exp(lambda_1)+1+beta_1left( frac{c_1-Phi^{-1}(0.05)sqrt{k_1}}{mu_1} right)^2,\ mu_2= -exp(delta_2), k_2=Phi(xi_2), beta_2=exp(nu_2),\ alpha_2=exp(lambda_2)+1+beta_2left( frac{c_2-Phi^{-1}(0.95)sqrt{k_2}}{mu_2} right)^2,\ beta_3=exp(nu_3), alpha_3=exp(lambda_3).

Value

Return zero if parameter values satisfy constraints. Otherwise, program exits abnormally.

Author(s)

Yunfeng Li <colinlee1999@gmail.com> and Weiliang Qiu <stwxq@channing.harvard.edu>

References

Li Y, Morrow J, Raby B, Tantisira K, Weiss ST, Huang W, Qiu W. (2017), <doi:10.1371/journal.pone.0174602>

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
checkPara(
  mu1 = 5.015045e-01, 
  k1 = 2.756702e-13, 
  alpha1 = 2.192323e+00, 
  beta1 = 1.108378e-01,
  mu2 = -8.448602e-01, 
  k2 = 5.034642e-01, 
  alpha2 = 1.766274e+00, 
  beta2 = 6.917261e-02,
  alpha3 = 1.392992e+00, 
  beta3 = 9.636037e-02,
  c1 = qnorm(0.95),
  c2 = qnorm(0.05)
)

eLNNpaired documentation built on May 29, 2017, 12:04 p.m.