Description Usage Arguments Details Value Author(s) References See Also Examples
View source: R/paraTransform.R
Parameter reparameterization.
1 2 3 4 5 6 7 8 9 10 11 12 13 |
mu1 |
mean of the mean expression levels for gene probes in cluster 1 (over-expressed probes). |
k1 |
scalar in the variance of the mean expression levles for gene probes in cluster 1 (over-expressed probes). |
alpha1 |
shape parameter of the distribution of the variance of gene expression levels for gene probes in cluster 1 (over-expressed probes). |
beta1 |
rate parameter of the distribution of the variance of gene expression levels for gene probes in cluster 1 (over-expressed probes). |
mu2 |
mean of the mean expression levels for gene probes in cluster 2 (under-expressed probes). |
k2 |
scalar in the variance of the mean expression levles for gene probes in cluster 2 (under-expressed probes). |
alpha2 |
shape parameter of the distribution of the variance of gene expression levels for gene probes in cluster 2 (under-expressed probes). |
beta2 |
rate parameter of the distribution of the variance of gene expression levels for gene probes in cluster 2 (under-expressed probes). |
alpha3 |
shape parameter of the distribution of the variance of gene expression levels for gene probes in cluster 3 (non-differentially expressed probes). |
beta3 |
rate parameter of the distribution of the variance of gene expression levels for gene probes in cluster 3 (non-differentially expressed probes). |
c1 |
the lower bound for mu_g/sqrt(tau_g^{-1}) for cluster 1 (over-expressed probes). By default c_1=Phi^{-1}(0.95). |
c2 |
the upper bound for mu_g/sqrt(tau_g^{-1}) for cluster 2 (under-expressed probes). By default c_2=Phi^{-1}(0.05). |
We assume the following the Bayesian hierarchical models for the 3 clusters of gene probes.
For cluster 1 (over-expressed gene probes):
d_{gl} | (mu_g, tau_g) ~ N(mu_g, tau_g^{-1}),\ mu_g | tau_g ~ N(mu_1, k_1 tau_g^{-1}),\ tau_g ~ Gamma(alpha_1, beta_1).
For cluster 2 (under-expressed gene probes):
d_{gl} | (mu_g, tau_g) ~ N(mu_g, tau_g^{-1}),\ mu_g | tau_g ~ N(mu_2, k_2 tau_g^{-1}),\ tau_g ~ Gamma(alpha_2, beta_2).
For cluster 3 (non-differentially-expressed gene probes):
d_{gl} | (mu_g, tau_g) ~ N(0m, tau_g^{-1}),\ tau_g ~ Gamma(alpha_3, beta_3).
For cluster 1, we add one constraint
alpha_1>1+beta_1( (c_1-Phi^{-1}(0.05)sqrt{k_1})/mu_1 \right)^2
based on
Pr(mu_g/tau_g^{-1} <= c_1 | tau_g^{-1})<0.05,
where c_1=Phi^{-1}(0.05) and Phi is the cumulative distribution function of the standard normal distribution.
For cluster 2, we add one constraint
alpha_2>1+beta_2( (c_2-Phi^{-1}(0.95)sqrt{k_2})/mu_2 \right)^2
based on
Pr(mu_g/tau_g^{-1} >= c_2 | tau_g^{-1})<0.05,
where c_2=Phi^{-1}(0.95) and Phi is the cumulative distribution function of the standard normal distribution.
To do unconstraint numerical optimization, we do parameter reparameterization:
mu_1=exp(delta_1), k_1=Phi(xi_1), beta_1=exp(nu_1),\ alpha_1=exp(lambda_1)+1+beta_1left( frac{c_1-Phi^{-1}(0.05)sqrt{k_1}}{mu_1} right)^2,\ mu_2= -exp(delta_2), k_2=Phi(xi_2), beta_2=exp(nu_2),\ alpha_2=exp(lambda_2)+1+beta_2left( frac{c_2-Phi^{-1}(0.95)sqrt{k_2}}{mu_2} right)^2,\ beta_3=exp(nu_3), alpha_3=exp(lambda_3).
A 10x1 vector of reparameterized parameters: delta_1, xi_1, lambda_1, nu_1, delta_2, xi_2, lambda_2, nu_2, lambda_3, nu_3.
Yunfeng Li <colinlee1999@gmail.com> and Weiliang Qiu <stwxq@channing.harvard.edu>
Li Y, Morrow J, Raby B, Tantisira K, Weiss ST, Huang W, Qiu W. (2017), <doi:10.1371/journal.pone.0174602>
See Also as getPara.orig
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.