Description Usage Arguments Value Author(s) References Examples
Detecting differentially expressed gene probes via eLNNpaired model.
1 2 3 4 5 6 7 8 9 10 11 12 | eLNNpaired(
E_Set,
b = c(2, 2, 2),
verbose = 0,
converge_threshold = 1e-06,
using_limit = 0,
param_limit_min = c(-6, qnorm(0.01), -6, -6, -6, qnorm(0.01), -6, -6, -6, -6),
param_limit_max = c(6, qnorm(0.99), 6, 6, 6, qnorm(0.99), 6, 6, 6, 6),
maxIT = 100,
maxRT = 100,
c1 = qnorm(0.95),
c2 = qnorm(0.05))
|
E_Set |
An ExpressionSet object containing within-subject log2 difference of gene expression levels. |
b |
A vector of concentration parameters used in Dirichlet distribution. Default value is |
verbose |
An indicator variable telling if print out intermediate results: zero value for not printing out, non-zero for printing out. Default value is |
converge_threshold |
One of the two termination criteria of iteration. The smaller this value is set, the harder the optimization procedure in eLNNpaired will be considered to be converged. Default value is |
using_limit |
An indicator variable telling if constrained optimization method will be adopted: zero value for unconstrained while non-zero value for constrained optimization. Default value is |
param_limit_min |
An vector of lower bounds of parameters.
Default value is |
param_limit_max |
An vector of upper bounds of parameters. Default value is |
maxIT |
An integer, the max allowed number of iterations in R built-in function optim. Default value is maxIT = 100. |
maxRT |
An integer, the max allowed number of iterations for EM algorithm. Default value is |
c1 |
A parameter in constraints. It should be in the form of
|
c2 |
A parameter in constraints. It should be in the form of
|
A list of 8 elementes:
mleinfo |
the return value from built-in optim function |
psi |
estimated reparameterized parameters |
para.orig |
estimated parameters in original scale |
memGenes |
3-cluster probe cluster membership: 1 indicates over-expressed probes; 2 indicates under-expressed probes; 3 indicates non-differentially expressed probes |
memGenes2 |
2-clustre probe cluster membership: 1 indicates differentially-expressed probes; 0 indicates non-differentially expressed probes |
t_pi |
the cluster proportion for cluster 1 (over-expressed probes) and cluster 2 (under-expressed probes). |
repeated_times |
the number of iterations that EM algorithm takes |
tilde_z |
tilde z as discribed in paper, the posterior probability that each gene will fall into each cluster. |
Yunfeng Li <colinlee1999@gmail.com> and Weiliang Qiu <stwxq@channing.harvard.edu>
Li Y, Morrow J, Raby B, Tantisira K, Weiss ST, Huang W, Qiu W. (2017), <doi:10.1371/journal.pone.0174602>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | set.seed(100)
G = 500
n = 10
delta_1 = -0.8184384
xi_1 = -1.1858546
lambda_1 = -10.6309216
nu_1 = -3.5536255
delta_2 = -0.8153614
xi_2 = -1.4120148
lambda_2 = -13.1999427
nu_2 = -3.3873531
lambda_3 = 0.7597441
nu_3 = -2.0361091
psi = c(delta_1, xi_1, lambda_1, nu_1,
delta_2, xi_2, lambda_2, nu_2,
lambda_3, nu_3)
t_pi = c(0.08592752, 0.07110449)
c1 = qnorm(0.95)
c2 = qnorm(0.05)
E_Set = gen_eLNNpaired(G, n, psi, t_pi, c1, c2)
result = eLNNpaired(E_Set, verbose = 1, c1 = c1, c2 = c2)
print(table(result$memGenes, fData(E_Set)$memGenes.true))
print(table(result$memGenes2, fData(E_Set)$memGenes2.true))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.