Description Usage Arguments Value Author(s) References Examples
View source: R/gen_eLNNpaired.r
Generate a simulated data set from eLNNpaired model and store it into an ExpressionSet object.
1 | gen_eLNNpaired(G, n, psi, t_pi, c1 = qnorm(0.95), c2 = qnorm(0.05))
|
G |
An integer, the number of genes. |
n |
An integer, the number of pairs for each gene. |
psi |
A vector of length 10. It contains the parameters after reparameterization as illustrated in paper: delta_1, xi_1, lambda_1, nu_1, delta_2, xi_2, lambda_2, nu_2, lambda_3, and nu_3. |
t_pi |
the cluster proportion for cluster 1 (over-expressed probes) and cluster 2 (under-expressed probes). |
c1 |
A parameter in constraints. It should be in the form of c1 = qnorm(X), where X is a decimal smaller than 1 but close to 1. Larger X gives more stringent constraint. Default value is |
c2 |
A parameter in constraints. It should be in the form of c2 = qnorm(Y), where Y is a decimal larger than 0 but close to 0. Smaller Y gives more stringent constraint. Default value is |
An ExpressionSet object, the feature data frame of which include
memGenes.true
(3-cluster membership for gene probes)
and memGenes2.true
(2-cluster membership for gene probes).
In 3-cluster membership, 1 indicates over-expressed, 2 indicates under-expressed, and 3 indicates non-differentially expressed.
In 2-cluster membership, 1 indicates differentially expressed, 0 indicates non-differentially expressed.
Yunfeng Li <colinlee1999@gmail.com> and Weiliang Qiu <stwxq@channing.harvard.edu>
Li Y, Morrow J, Raby B, Tantisira K, Weiss ST, Huang W, Qiu W. (2017), <doi:10.1371/journal.pone.0174602>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | set.seed(100)
G = 500
n = 10
delta_1 = -0.8184384
xi_1 = -1.1858546
lambda_1 = -10.6309216
nu_1 = -3.5536255
delta_2 = -0.8153614
xi_2 = -1.4120148
lambda_2 = -13.1999427
nu_2 = -3.3873531
lambda_3 = 0.7597441
nu_3 = -2.0361091
psi = c(delta_1, xi_1, lambda_1, nu_1,
delta_2, xi_2, lambda_2, nu_2,
lambda_3, nu_3)
t_pi = c(0.08592752, 0.07110449)
c1 = qnorm(0.95)
c2 = qnorm(0.05)
E_Set = gen_eLNNpaired(G, n, psi, t_pi, c1, c2)
print(E_Set)
# phenotype data
pDat = pData(E_Set)
print(pDat[1:2,])
# feature data
fDat = fData(E_Set)
print(fDat[1:2,])
print(table(fDat$memGenes.true, useNA="ifany"))
print(table(fDat$memGenes2.true, useNA="ifany"))
print(table(fDat$memGenes.true, fDat$memGenes2.true, useNA="ifany"))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.