gen_eLNNpaired: Generate a Simulated Data Set from eLNNpaired Model

Description Usage Arguments Value Author(s) References Examples

View source: R/gen_eLNNpaired.r

Description

Generate a simulated data set from eLNNpaired model and store it into an ExpressionSet object.

Usage

1
gen_eLNNpaired(G, n, psi, t_pi, c1 = qnorm(0.95), c2 = qnorm(0.05))

Arguments

G

An integer, the number of genes.

n

An integer, the number of pairs for each gene.

psi

A vector of length 10. It contains the parameters after reparameterization as illustrated in paper: delta_1, xi_1, lambda_1, nu_1, delta_2, xi_2, lambda_2, nu_2, lambda_3, and nu_3.

t_pi

the cluster proportion for cluster 1 (over-expressed probes) and cluster 2 (under-expressed probes).

c1

A parameter in constraints. It should be in the form of c1 = qnorm(X), where X is a decimal smaller than 1 but close to 1. Larger X gives more stringent constraint. Default value is c1 = qnorm(0.95).

c2

A parameter in constraints. It should be in the form of c2 = qnorm(Y), where Y is a decimal larger than 0 but close to 0. Smaller Y gives more stringent constraint. Default value is c2 = qnorm(0.05).

Value

An ExpressionSet object, the feature data frame of which include memGenes.true (3-cluster membership for gene probes) and memGenes2.true (2-cluster membership for gene probes).

In 3-cluster membership, 1 indicates over-expressed, 2 indicates under-expressed, and 3 indicates non-differentially expressed.

In 2-cluster membership, 1 indicates differentially expressed, 0 indicates non-differentially expressed.

Author(s)

Yunfeng Li <colinlee1999@gmail.com> and Weiliang Qiu <stwxq@channing.harvard.edu>

References

Li Y, Morrow J, Raby B, Tantisira K, Weiss ST, Huang W, Qiu W. (2017), <doi:10.1371/journal.pone.0174602>

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
set.seed(100)
G = 500
n = 10

delta_1 = -0.8184384  
xi_1 = -1.1858546 
lambda_1 = -10.6309216  
nu_1 = -3.5536255  

delta_2 = -0.8153614  
xi_2 = -1.4120148 
lambda_2 = -13.1999427  
nu_2 = -3.3873531   

lambda_3 = 0.7597441  
nu_3 = -2.0361091 

psi = c(delta_1, xi_1, lambda_1, nu_1,
        delta_2, xi_2, lambda_2, nu_2,
        lambda_3, nu_3)
t_pi = c(0.08592752, 0.07110449)

c1 = qnorm(0.95)
c2 = qnorm(0.05)

E_Set = gen_eLNNpaired(G, n, psi, t_pi, c1, c2)


print(E_Set)

# phenotype data
pDat = pData(E_Set)
print(pDat[1:2,])

# feature data
fDat = fData(E_Set)
print(fDat[1:2,])

print(table(fDat$memGenes.true, useNA="ifany"))
print(table(fDat$memGenes2.true, useNA="ifany"))

print(table(fDat$memGenes.true, fDat$memGenes2.true, useNA="ifany"))

eLNNpaired documentation built on May 29, 2017, 12:04 p.m.