Nothing
#' The default em function
#' @param object the model used, e.g. `lm`, `glm`, `gnm`.
#' @param ... arguments used in the `model`.
#' @param latent the number of latent classes.
#' @param verbose `True` to print the process of convergence.
#' @param init.method the initialization method used in the model.
#' The default method is `random`. `kmeans` is K-means clustering.
#' `hc` is model-based agglomerative hierarchical clustering.
#' @param init.prob the starting prior probabilities used in classification based method.
#' @param max_iter the maximum iteration for em algorithm.
#' @param algo the algorithm used in em: `em` the default EM algorithm,
#' the classification em `cem`, or the stochastic em `sem`.
#' @return An object of class `em` is a list containing at least the following components:
#' \code{models} a list of models/objects whose class are determined by a model fitting from the previous step.
#' \code{pi} the prior probabilities.
#' \code{latent} number of the latent classes.
#' \code{algorithm} the algorithm used (could be either `em`, `sem` or `cem`).
#' \code{obs} the number of observations.
#' \code{post_pr} the posterior probabilities.
#' \code{concomitant} a list of the concomitant model. It is empty if no concomitant model is used.
#' \code{init.method} the initialization method used.
#' \code{call} the matched call.
#' \code{terms} the code{terms} object used.
#' @export
em.fitdist <- function(object, latent = 2, verbose = FALSE,
init.method = c("random", "kmeans", "hc"), init.prob = NULL,
algo = c("em", "cem", "sem"),
max_iter = 500, ...) {
args <- list()
# browser()
args$data <- object$data
args$method <- object$method
args$distname <- object$distname
args$fix.arg <- object$fix.arg
args$discrete <- object$discrete
object$start <- list(unname(object$estimate))
names(object$start) <- names(object$estimate)
cl <- quote(fitdist(data, distr = distname, method = method, fix.arg = fix.arg, discrete = discrete, start = start))
cl <- as.call(cl)
mt <- list()
mt$model <- object$data
mt$call <- cl
n <- object$n
# browser()
post_pr <- matrix(0, nrow = n, ncol = latent)
class(post_pr) <- match.arg(init.method)
post_pr <- init.em(post_pr, mt$x)
# post_pr <- vdummy(sample(1:latent, size=n, replace=T))
models <- list()
for (i in 1:latent) {
models[[i]] <- mt
}
results.con <- NULL
cnt <- 0
conv <- 1
llp <- 0
while ((abs(conv) > 1e-4) & (max_iter > cnt)) {
pi_matrix <- matrix(colSums(post_pr) / nrow(post_pr),
nrow = nrow(post_pr), ncol = ncol(post_pr),
byrow = T
)
results <- mstep(models, post_pr = post_pr)
for (i in (seq_len(length(results)))) {
print(results[[i]]$coefficients)
}
pi <- colSums(pi_matrix) / sum(pi_matrix)
post_pr <- estep(results, pi_matrix)
if (algo == "cem") {
post_pr <- cstep(post_pr)
} else if (algo == "sem") {
post_pr <- sstep(post_pr)
}
ll <- 0
for (i in seq_len(length(results))) {
if (pi[[i]] != 0) {
ll <- ll + pi[[i]] * fit.den(results[[i]])
}
}
ll <- sum(log(ll))
conv <- ll - llp
llp <- ll
if (verbose) {
cat(paste0(
"Iteration ", cnt, ": ",
"(EM) log likelihood = ",
round(ll, 4), "\n"
))
}
cnt <- cnt + 1
}
z <- list(
models = results,
pi = colSums(pi_matrix) / sum(pi_matrix),
latent = latent,
init.method = match.arg(init.method),
call = cl,
terms = mt$terms,
algorithm = algo,
obs = n,
post_pr = estep(results, pi_matrix)
)
class(z) <- c("em")
return(z)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.