Nothing
#' The em function for glmerMod
#' @param object the model used, e.g. `lm`, `glm`, `gnm`.
#' @param ... arguments used in the `model`.
#' @param latent the number of latent classes.
#' @param verbose `True` to print the process of convergence.
#' @param init.method the initialization method used in the model.
#' The default method is `random`. `kmeans` is K-means clustering.
#' `hc` is model-based agglomerative hierarchical clustering.
#' @param max_iter the maximum iteration for em algorithm.
#' @param algo the algorithm used in em: `em` the default EM algorithm,
#' the classification em `cem`, or the stochastic em `sem`.
#' @param concomitant the formula to define the concomitant part of the model.
#' The default is NULL.
#' @return An object of class `em` is a list containing at least the following components:
#' \code{models} a list of models/objects whose class are determined by a model fitting from the previous step.
#' \code{pi} the prior probabilities.
#' \code{latent} number of the latent classes.
#' \code{algorithm} the algorithm used (could be either `em`, `sem` or `cem`).
#' \code{obs} the number of observations.
#' \code{post_pr} the posterior probabilities.
#' \code{concomitant} a list of the concomitant model. It is empty if no concomitant model is used.
#' \code{init.method} the initialization method used.
#' \code{call} the matched call.
#' \code{terms} the code{terms} object used.
#' @importFrom methods .hasSlot slot
#' @importFrom stats .checkMFClasses delete.response density deviance fitted makepredictcall model.weights terms var
#' @export
em.glmerMod <- function(object, latent = 2, verbose = FALSE,
init.method = c("random", "kmeans", "hc"),
algo = c("em", "cem", "sem"),
max_iter = 500, concomitant = list(...), ...) {
if (!missing(...)) warning("extra arguments discarded")
algo <- match.arg(algo)
if (!("weights" %in% names(formals(match.fun(object@call[[1]]))))) {
warning("The model cannot be weighted. Changed to `sem` instead.")
algo <- "sem"
}
cl <- match.call()
# m <- match(c("call", "terms", "formula", "frame", "y", "data", "x"), slotNames(object), 0L)
# if (is.na(m[[1]])) {
# warning("There is no `call` for the model used.")
# } else if (is.na(m[[2]])) {
# warning("There is no `terms` for the model used.")
# } else {
# mt <- object[m]
# }
mt <- list()
for (i in c("call", "terms", "formula", "frame", "y", "data", "x")) {
if (.hasSlot(object, i)) {
mt[[i]] <- slot(object, i)
}
}
# attr(mt$terms, ".Environment") <- environment() # attached to the current env
if (is.null(mt$frame)) {
mf <- mt$call
mm <- match(
c("formula", "data", "subset", "weights", "na.action", "offset"),
names(mf), 0L
)
mf <- mf[c(1L, mm)]
mf[[1L]] <- quote(stats::model.frame)
mf <- eval(mf, parent.frame())
mt$frame <- mf
}
mt$terms <- attr(mt$frame, "terms")
n <- nrow(mt$frame)
mt$x <- model.matrix(mt$terms, mt$frame)
mt$y <- model.response(mt$frame)
# mt$y <- as.double(mt$y[,2])
## load the concomitant model
if (length(concomitant) != 0) {
m.con <- match(
c("formula", "data", "subset", "weights", "na.action", "offset"),
names(concomitant), 0L
)
mf.con <- concomitant[m.con]
mf.con$drop.unused.levels <- TRUE
mf.con <- do.call(model.frame, mf.con)
mt.con <- attr(mf.con, "terms")
}
#### TODO: use init.em for init_pr
post_pr <- matrix(0, nrow = n, ncol = latent)
class(post_pr) <- match.arg(init.method)
post_pr <- init.em(post_pr, mt$x)
# post_pr <- vdummy(sample(1:latent, size=n, replace=T))
models <- list()
for (i in 1:latent) {
models[[i]] <- object
}
results.con <- NULL
cnt <- 0
conv <- 1
llp <- 0
while ((abs(conv) > 1e-4) & (max_iter > cnt)) {
pi_matrix <- matrix(colSums(post_pr) / nrow(post_pr),
nrow = nrow(post_pr), ncol = ncol(post_pr),
byrow = T
)
browser()
results <- mstep(models, post_pr = post_pr)
if (length(concomitant) != 0) {
if ("formula" %in% names(concomitant)) {
results.con <- mstep.concomitant(concomitant$formula, mf.con, post_pr)
pi_matrix <- results.con$fitted.values
} else {
stop("concomitant need to be a formula")
}
}
pi <- colSums(pi_matrix) / sum(pi_matrix)
post_pr <- estep(results, pi_matrix)
if (algo == "cem") {
post_pr <- cstep(post_pr)
} else if (algo == "sem") {
post_pr <- sstep(post_pr)
}
ll <- 0
if (length(concomitant) == 0) {
for (i in seq_len(length(results))) {
if (pi[[i]] != 0) {
ll <- ll + pi[[i]] * fit.den(results[[i]])
}
}
ll <- sum(log(ll))
} else {
for (i in seq_len(length(results))) {
if (any(!is.na(results[[i]]))) {
ll <- ll + results.con$fitted.values[, i] * fit.den(results[[i]])
}
}
ll <- sum(log(ll))
}
conv <- ll - llp
llp <- ll
if (verbose) {
cat(paste0(
"Iteration ", cnt, ": ",
"(EM) log likelihood = ",
round(ll, 4), "\n"
))
}
cnt <- cnt + 1
}
z <- list(
models = results,
pi = colSums(pi_matrix) / sum(pi_matrix),
latent = latent,
init.method = match.arg(init.method),
call = cl,
terms = mt$terms,
algorithm = algo,
obs = n,
post_pr = estep(results, pi_matrix),
concomitant = concomitant
)
if (length(concomitant) != 0) {
z$results.con <- mstep.concomitant.refit(concomitant$formula, mf.con, post_pr)
z$terms.con <- mt.con
}
class(z) <- c("em.glmerMod")
return(z)
}
#' @export
summary.em.glmerMod <- function(object, ...) {
ans <- list(
call = object$call,
coefficients = list(),
pi = object$pi,
latent = object$latent,
ll = 0
)
names_coef <- c()
for (i in seq_len(length(object$models))) {
# browser()
if (any(!is.na(object$models[[i]]))) {
ans$sum.models[[i]] <- summary(object$models[[i]])
names_coef <- c(
names_coef,
paste(as.character(i),
names(coef(object$models[[i]])),
sep = "."
)
)
ans$coefficients[[i]] <- coef(ans$sum.models[[i]])
}
# ans$ll <- ans$ll + log(ans$pi[[i]]) + logLik(object$models[[i]])
# ans$ll <- ans$ll + sum(object$models[[i]]$weights*
# (log(ans$pi[[i]])+log(fit.den(object$models[[i]]))))
# ans$ll <- ans$ll + ans$pi[[i]]*fit.den(object$models[[i]])
}
if (length(object$concomitant) != 0) {
ans$concomitant <- object$concomitant
ans$concomitant.summary <- summary(object$results.con)
c.df <- nrow(ans$concomitant.summary$fitted.values) -
ans$concomitant.summary$rank
c.coef <- c()
c.std <- c()
c.tval <- c()
c.pval <- c()
c.names <- c()
for (i in 1:(ans$latent - 1)) {
na <- paste(rownames(ans$concomitant.summary$coefficients)[[i]],
colnames(ans$concomitant.summary$coefficients),
sep = "."
)
c.names <- c(c.names, na)
c.coef <- c(c.coef, ans$concomitant.summary$coefficients[i, ])
c.std <- c(c.std, ans$concomitant.summary$standard.errors[i, ])
}
c.tval <- c(c.tval, c.coef / c.std)
c.pval <- c(c.pval, 2 * pt(-abs(c.tval), c.df))
coef.con <- t(rbind(c.coef, c.std, c.tval, c.pval))
rownames(coef.con) <- c.names
colnames(coef.con) <- c(
"Estimate", "Std. Error",
"t value", "Pr(>|t|)"
)
ans$concomitant.coef <- coef.con
}
ans$ll <- logLik(object)
ans$df <- attr(ans$ll, "df")
ans$coefficients <- do.call(rbind, ans$coefficients)
rownames(ans$coefficients) <- names_coef
ans$obs <- object$obs
ans$AIC <- 2 * ans$df - 2 * ans$ll
ans$BIC <- ans$df * log(ans$obs) - 2 * ans$ll
class(ans) <- c("summary.em")
ans
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.