plot.enetLTS | R Documentation |
"enetLTS"
object
Produce plots for the coefficients, residuals, and diagnostics of the current model.
## S3 method for class 'enetLTS' plot(x,method=c("coefficients","resid","diagnostic"), vers=c("reweighted","raw"),...)
x |
object of class enetLTS, the model fit to be plotted. |
method |
a character string specifying the type of plot. Possible values are
|
vers |
a character string denoting which model to use for the plots.
Possible values are |
... |
additional arguments from the |
An object of class "ggplot"
(see ggplot
).
For method
, the choices are:
method="coefficients"
- coefficients vs indices.
method="resid"
- residuals vs indices. (for both family="binomial"
and family="gaussian"
).
- additionally, residuals vs fitted values (for only family="gaussian"
).
method="diagnostics"
- fitted values vs indices.
Fatma Sevinc KURNAZ, Irene HOFFMANN, Peter FILZMOSER
Maintainer: Fatma Sevinc KURNAZ <fatmasevinckurnaz@gmail.com>;<fskurnaz@yildiz.edu.tr>
Kurnaz, F.S., Hoffmann, I. and Filzmoser, P. (2017) Robust and sparse estimation methods for high dimensional linear and logistic regression. Chemometrics and Intelligent Laboratory Systems.
ggplot
,
enetLTS
,
coef.enetLTS
,
predict.enetLTS
,
residuals.enetLTS
,
fitted.enetLTS
## for gaussian set.seed(86) n <- 100; p <- 25 # number of observations and variables beta <- rep(0,p); beta[1:6] <- 1 # 10% nonzero coefficients sigma <- 0.5 # controls signal-to-noise ratio x <- matrix(rnorm(n*p, sigma),nrow=n) e <- rnorm(n,0,1) # error terms eps <- 0.1 # contamination level m <- ceiling(eps*n) # observations to be contaminated eout <- e; eout[1:m] <- eout[1:m] + 10 # vertical outliers yout <- c(x %*% beta + sigma * eout) # response xout <- x; xout[1:m,] <- xout[1:m,] + 10 # bad leverage points fit1 <- enetLTS(xout,yout,crit.plot=FALSE) plot(fit1) plot(fit1,method="resid",vers="raw") plot(fit1,method="coefficients",vers="reweighted") plot(fit1,method="diagnostic") ## for binomial eps <-0.05 # %10 contamination to only class 0 m <- ceiling(eps*n) y <- sample(0:1,n,replace=TRUE) xout <- x xout[y==0,][1:m,] <- xout[1:m,] + 10; # class 0 yout <- y # wrong classification for vertical outliers fit2 <- enetLTS(xout,yout,family="binomial",crit.plot=FALSE) plot(fit2) plot(fit2,method="resid",vers="raw") plot(fit2,method="coefficients",vers="reweighted") plot(fit2,method="diagnostic") ## for multinomial n <- 120; p <- 15 NC <- 3 X <- matrix(rnorm(n * p), n, p) betas <- matrix(1:NC, ncol=NC, nrow=p, byrow=TRUE) betas[(p-5):p,]=0; betas <- rbind(rep(0,NC),betas) lv <- cbind(1,X) %*% betas probs <- exp(lv)/apply(exp(lv),1,sum) y <- apply(probs,1,function(prob){sample(1:NC, 1, TRUE, prob)}) xout <- X eps <-0.05 # %10 contamination to only class 0 m <- ceiling(eps*n) xout[1:m,] <- xout[1:m,] + 10 # bad leverage points yout <- y fit3 <- enetLTS(xout,yout,family="multinomial") plotCoef.enetLTS(fit3) plotCoef.enetLTS(fit3,vers="raw")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.