View source: R/weights.enetLTS.R
weights.enetLTS | R Documentation |
"enetLTS"
object
Extract binary weights that indicate outliers from the current model.
## S3 method for class 'enetLTS' weights(object,vers=c("reweighted","raw","both"),index=FALSE,...)
object |
the model fit from which to extract outlier weights. |
vers |
a character string specifying for which estimator to extract
outlier weights. Possible values are |
index |
a logical indicating whether the indices of the weight vector should
be included or not (the default is |
... |
additional arguments from the |
A numeric vector containing the requested outlier weights.
The weights are 1 for observations with reasonably small
residuals and 0 for observations with large residuals.
Here, residuals represent standardized residuals
for family="gaussian"
, Pearson residuals for
family="binomial"
and group-wise scaled robust distances
family="multinomial"
.
Use weights with or without index is available.
Fatma Sevinc KURNAZ, Irene HOFFMANN, Peter FILZMOSER
Maintainer: Fatma Sevinc KURNAZ <fatmasevinckurnaz@gmail.com>;<fskurnaz@yildiz.edu.tr>
enetLTS
## for gaussian set.seed(86) n <- 100; p <- 25 # number of observations and variables beta <- rep(0,p); beta[1:6] <- 1 # 10% nonzero coefficients sigma <- 0.5 # controls signal-to-noise ratio x <- matrix(rnorm(n*p, sigma),nrow=n) e <- rnorm(n,0,1) # error terms eps <- 0.1 # contamination level m <- ceiling(eps*n) # observations to be contaminated eout <- e; eout[1:m] <- eout[1:m] + 10 # vertical outliers yout <- c(x %*% beta + sigma * eout) # response xout <- x; xout[1:m,] <- xout[1:m,] + 10 # bad leverage points fit1 <- enetLTS(xout,yout) weights(fit1) weights(fit1,vers="raw",index=TRUE) weights(fit1,vers="both",index=TRUE) ## for binomial eps <-0.05 # %10 contamination to only class 0 m <- ceiling(eps*n) y <- sample(0:1,n,replace=TRUE) xout <- x xout[y==0,][1:m,] <- xout[1:m,] + 10; # class 0 yout <- y # wrong classification for vertical outliers fit2 <- enetLTS(xout,yout,family="binomial") weights(fit2) weights(fit2,vers="raw",index=TRUE) weights(fit2,vers="both",index=TRUE) ## for multinomial n <- 120; p <- 15 NC <- 3 X <- matrix(rnorm(n * p), n, p) betas <- matrix(1:NC, ncol=NC, nrow=p, byrow=TRUE) betas[(p-5):p,]=0; betas <- rbind(rep(0,NC),betas) lv <- cbind(1,X) %*% betas probs <- exp(lv)/apply(exp(lv),1,sum) y <- apply(probs,1,function(prob){sample(1:NC, 1, TRUE, prob)}) xout <- X eps <-0.05 # %10 contamination to only class 0 m <- ceiling(eps*n) xout[1:m,] <- xout[1:m,] + 10 # bad leverage points yout <- y fit3 <- enetLTS(xout,yout,family="multinomial") weights(fit3) weights(fit3,vers="raw",index=TRUE) weights(fit3,vers="both",index=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.