View source: R/print.enetLTS.R
print.enetLTS | R Documentation |
"enetLTS"
object
Print a summary of the enetLTS
object.
## S3 method for class 'enetLTS' print(x,vers=c("reweighted","raw"),...)
x |
fitted |
vers |
a character string specifying for which fit to make
predictions. Possible values are |
... |
additional arguments from the |
The call that produced the enetLTS
object is printed, followed by
the coefficients, the number of nonzero coefficients and penalty parameters.
The produced object, the coefficients, the number of nonzero coefficients and penalty parameters are returned.
Fatma Sevinc KURNAZ, Irene HOFFMANN, Peter FILZMOSER
Maintainer: Fatma Sevinc KURNAZ <fatmasevinckurnaz@gmail.com>;<fskurnaz@yildiz.edu.tr>
enetLTS
,
predict.enetLTS
,
coef.enetLTS
## for gaussian set.seed(86) n <- 100; p <- 25 # number of observations and variables beta <- rep(0,p); beta[1:6] <- 1 # 10% nonzero coefficients sigma <- 0.5 # controls signal-to-noise ratio x <- matrix(rnorm(n*p, sigma),nrow=n) e <- rnorm(n,0,1) # error terms eps <- 0.1 # contamination level m <- ceiling(eps*n) # observations to be contaminated eout <- e; eout[1:m] <- eout[1:m] + 10 # vertical outliers yout <- c(x %*% beta + sigma * eout) # response xout <- x; xout[1:m,] <- xout[1:m,] + 10 # bad leverage points fit1 <- enetLTS(xout,yout) print(fit1) print(fit1,vers="raw") ## for binomial eps <-0.05 # %10 contamination to only class 0 m <- ceiling(eps*n) y <- sample(0:1,n,replace=TRUE) xout <- x xout[y==0,][1:m,] <- xout[1:m,] + 10; # class 0 yout <- y # wrong classification for vertical outliers fit2 <- enetLTS(xout,yout,family="binomial") print(fit2) print(fit2,vers="raw") ## for multinomial n <- 120; p <- 15 NC <- 3 X <- matrix(rnorm(n * p), n, p) betas <- matrix(1:NC, ncol=NC, nrow=p, byrow=TRUE) betas[(p-5):p,]=0; betas <- rbind(rep(0,NC),betas) lv <- cbind(1,X) %*% betas probs <- exp(lv)/apply(exp(lv),1,sum) y <- apply(probs,1,function(prob){sample(1:NC, 1, TRUE, prob)}) xout <- X eps <-0.05 # %10 contamination to only class 0 m <- ceiling(eps*n) xout[1:m,] <- xout[1:m,] + 10 # bad leverage points yout <- y fit3 <- enetLTS(xout,yout,family="multinomial") print(fit3) print(fit3,vers="raw")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.