plotResid.enetLTS: residuals plots from the '"enetLTS"' object

View source: R/plotResid.enetLTS.R

plotResid.enetLTSR Documentation

residuals plots from the "enetLTS" object

Description

Produce plots for the residuals of the current model. Residuals corresponds to deviances for family="multinomial" and family="binomial".

Usage

plotResid.enetLTS(object,vers=c("reweighted","raw"), ...)

Arguments

object

the model fit to be plotted.

vers

a character string denoting which model to use for the plots. Possible values are "reweighted" (the default) for plots from the reweighted fit, and "raw" for plots from the raw fit.

...

additional arguments from the enetLTS object if needed.

Value

An object of class "ggplot" (see ggplot).

Note

gives the plot of - residuals vs indices. (for family="gaussian").

- deviances vs indices. (for both family="multinomial" and family="binomial").

- additionally, residuals vs fitted values/link function (for family="binomial" and family="gaussian").

Author(s)

Fatma Sevinc KURNAZ, Irene HOFFMANN, Peter FILZMOSER
Maintainer: Fatma Sevinc KURNAZ <fatmasevincskurnaz@gmail.com>;<fskurnaz@yildiz.edu.tr>

References

Kurnaz, F.S., Hoffmann, I. and Filzmoser, P. (2017) Robust and sparse estimation methods for high dimensional linear and logistic regression. Chemometrics and Intelligent Laboratory Systems.

See Also

ggplot, enetLTS, predict.enetLTS, residuals.enetLTS, fitted.enetLTS

Examples

## for gaussian

set.seed(86)
n <- 100; p <- 25                             # number of observations and variables
beta <- rep(0,p); beta[1:6] <- 1              # 10% nonzero coefficients
sigma <- 0.5                                  # controls signal-to-noise ratio
x <- matrix(rnorm(n*p, sigma),nrow=n)
e <- rnorm(n,0,1)                             # error terms
eps <- 0.1                                    # contamination level
m <- ceiling(eps*n)                           # observations to be contaminated
eout <- e; eout[1:m] <- eout[1:m] + 10        # vertical outliers
yout <- c(x %*% beta + sigma * eout)        # response
xout <- x; xout[1:m,] <- xout[1:m,] + 10      # bad leverage points


fit1 <- enetLTS(xout,yout)
plotResid.enetLTS(fit1)
plotResid.enetLTS(fit1,vers="raw")

## for binomial

eps <-0.05                                     # %10 contamination to only class 0
m <- ceiling(eps*n)
y <- sample(0:1,n,replace=TRUE)
xout <- x
xout[y==0,][1:m,] <- xout[1:m,] + 10;          # class 0
yout <- y                                      # wrong classification for vertical outliers


fit2 <- enetLTS(xout,yout,family="binomial",crit.plot=FALSE)
plotResid.enetLTS(fit2)
plotResid.enetLTS(fit2,vers="raw")


## for multinomial

n <- 120; p <- 15
NC <- 3
X <- matrix(rnorm(n * p), n, p)
betas <- matrix(1:NC, ncol=NC, nrow=p, byrow=TRUE)
betas[(p-5):p,]=0; betas <- rbind(rep(0,NC),betas)
lv <- cbind(1,X) %*% betas
probs <- exp(lv)/apply(exp(lv),1,sum)
y <- apply(probs,1,function(prob){sample(1:NC, 1, TRUE, prob)})
xout <- X
eps <-0.05                          # %10 contamination to only class 0
m <- ceiling(eps*n)
xout[1:m,] <- xout[1:m,] + 10       # bad leverage points
yout <- y


fit3 <- enetLTS(xout,yout,family="multinomial")
plotResid.enetLTS(fit3)
plotResid.enetLTS(fit3,vers="raw")


enetLTS documentation built on May 22, 2022, 1:05 a.m.