Description Usage Arguments Examples
Determine the lambda_max value that would be generated from a call to
glmnet
without making that call.
1 2 | lambda_max(y, x, standardize = TRUE, alpha = 0, lmin_factor = 1e-04,
...)
|
y |
the response vector |
x |
the predictor matrix |
standardize |
logicial, should the x matrix be standardized? |
alpha |
the glmnet alpha value |
lmin_factor |
the smallest lambda value is defined as |
... |
other args |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | data(tbi)
Xmat <- model.matrix( ~ . - injury1 - injury2 - injury3 - 1, data = tbi)
Yvec <- matrix(tbi$injury1, ncol = 1)
alphas <- seq(0, 1, length = 20)
lambda_max(Yvec, Xmat, alpha = alphas)
# Look at different options for standardizing the inputs.
dat <-
expand.grid(standardize = c(TRUE, FALSE),
alpha = alphas)
lmax <-
Map(lambda_max,
standardize = dat$standardize,
alpha = dat$alpha,
MoreArgs = list(y = Yvec, x = Xmat))
gmax <-
Map(glmnet::glmnet,
standardize = dat$standardize,
alpha = dat$alpha,
MoreArgs = list(y = Yvec, x = Xmat))
dat$gmax <- sapply(gmax, function(f) f$lambda[1])
dat$lmax <- unlist(lmax)
par(mfrow = c(1, 2))
with(subset(dat, standardize == TRUE),
{
plot(log10(gmax), log10(lmax))
abline(0, 1)
title(main = "standardize == TRUE")
})
with(subset(dat, standardize == FALSE),
{
plot(log10(gmax), log10(lmax))
abline(0, 1)
title(main = "standardize == FALSE")
})
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.