Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----message=FALSE, warning=FALSE---------------------------------------------
library(eph)
library(dplyr)
library(tidyr)
library(purrr)
library(ggplot2)
## -----------------------------------------------------------------------------
ind_3_18 <- get_microdata(
year = 2018,
period = 3,
type = "individual"
)
## -----------------------------------------------------------------------------
ind_3_18 <- organize_labels(
df = ind_3_18,
type = "individual"
)
## -----------------------------------------------------------------------------
hog_3_18 <- get_microdata(
year = 2018,
period = 3,
type = "hogar"
) %>%
organize_labels(.,
type = "hogar"
)
## -----------------------------------------------------------------------------
calculate_tabulates(
base = ind_3_18,
x = "NIVEL_ED",
y = "CH04",
weights = "PONDERA",
add.totals = "row",
add.percentage = "col"
)
## -----------------------------------------------------------------------------
calculate_tabulates(
base = ind_3_18,
x = "NIVEL_ED",
y = "CH04",
add.totals = "row",
add.percentage = "col"
)
## -----------------------------------------------------------------------------
### Armo vector con el nombre de las variables de interés incluyendo
# -variables necesarias para hacer el panel
# -variables que nos interesan en nuestro análisis
variables <- c(
"CODUSU", "NRO_HOGAR", "COMPONENTE", "ANO4",
"TRIMESTRE", "CH04", "CH06",
"ESTADO", "PONDERA"
)
### Descargo la base individual para el 2018_t1
base_2018t1 <- get_microdata(
year = 2018, period = 1, type = "individual",
vars = variables
)
### Descargo la base individual para el 2018_t2
base_2018t2 <- get_microdata(
year = 2018, period = 2, type = "individual",
vars = variables
)
### Armo el panel
pool <- organize_panels(
bases = list(base_2018t1, base_2018t2),
variables = c("ESTADO", "PONDERA"),
window = "trimestral"
)
## -----------------------------------------------------------------------------
pool
## ----message=FALSE, warning=FALSE---------------------------------------------
pool %>%
organize_labels(.) %>%
calculate_tabulates(
x = "ESTADO",
y = "ESTADO_t1",
weights = "PONDERA",
add.percentage = "row"
)
## ----message=FALSE, warning=FALSE---------------------------------------------
df <- get_microdata(
year = 2017:2019,
period = 1:4,
type = "individual",
vars = c("ANO4", "TRIMESTRE", "PONDERA", "ESTADO", "CAT_OCUP")
)
df %>%
sample_n(5)
## -----------------------------------------------------------------------------
df <- df %>%
group_by(ANO4, TRIMESTRE) %>%
summarise(indicador = sum(PONDERA[CAT_OCUP == 3 & ESTADO == 1], na.rm = T) / sum(PONDERA[ESTADO == 1], na.rm = T))
df
## -----------------------------------------------------------------------------
lineas <- get_poverty_lines()
lineas
## ----fig.width=7, fig.height=5------------------------------------------------
lineas %>%
select(-ICE) %>%
pivot_longer(cols = c("CBA", "CBT"), names_to = "canasta", values_to = "valor") %>%
ggplot() +
geom_line(aes(x = periodo, y = valor, col = canasta))
## -----------------------------------------------------------------------------
canastas_reg_example
## -----------------------------------------------------------------------------
adulto_equivalente %>% head()
## ----warning=FALSE------------------------------------------------------------
bases <- bind_rows(toybase_individual_2016_03, toybase_individual_2016_04)
base_pobreza <- calculate_poverty(
base = bases,
basket = canastas_reg_example,
print_summary = TRUE
)
## -----------------------------------------------------------------------------
base_pobreza %>%
select(CODUSU, ITF, region, adequi_hogar, CBA_hogar, CBT_hogar, situacion) %>%
sample_n(10)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.