Nothing
## ----echo = FALSE-------------------------------------------------------------
LOCAL <- TRUE
# identical(Sys.getenv("LOCAL"), "TRUE")
knitr::opts_chunk$set(
purl = LOCAL,
collapse = TRUE,
comment = "#>"
)
## ----setup, eval=LOCAL,include=FALSE------------------------------------------
knitr::opts_chunk$set(warning = FALSE, message = FALSE, results = "hide")
## ----results='hide',warning=FALSE---------------------------------------------
library(eph)
library(dplyr)
library(tidyr)
library(readr)
library(lubridate)
library(ggplot2)
library(forcats)
## ----eval=LOCAL---------------------------------------------------------------
canastas_regionales <- get_poverty_lines(regional = TRUE)
bases <- get_microdata(
year = 2016:2019,
period = 1:4,
type = "individual",
vars = c("ANO4", "TRIMESTRE", "REGION", "CODUSU", "NRO_HOGAR", "CH04", "CH06", "ITF", "PONDIH", "PP07H", "PP04D_COD")
# ,destfile = 'bases_eph.rds'
)
## ----eval=LOCAL---------------------------------------------------------------
# bases <- bases %>% unnest(cols = c(microdata))
bases_pobreza <- calculate_poverty(bases, canastas_regionales, print_summary = TRUE)
bases_pobreza
## ----eval=LOCAL---------------------------------------------------------------
pobreza_oficial <- read_csv("https://raw.githubusercontent.com/holatam/data/master/eph/canasta/pobreza_oficial.csv")
pobreza_oficial <- pobreza_oficial %>%
mutate(periodo = parse_date_time(paste0(ANO4, "-", SEMESTRE * 2), "Y.q")) %>%
select(periodo, pobreza_oficial = tasa_pobreza, indigencia_oficial = tasa_indigencia)
pobreza_oficial
## ----eval=LOCAL---------------------------------------------------------------
Pobreza_resumen <- bases_pobreza %>%
group_by(ANO4, TRIMESTRE) %>%
summarise(
Tasa_pobreza = sum(PONDIH[situacion %in% c("pobre", "indigente")], na.rm = TRUE) / sum(PONDIH, na.rm = TRUE),
Tasa_indigencia = sum(PONDIH[situacion == "indigente"], na.rm = TRUE) / sum(PONDIH, na.rm = TRUE),
.groups = "drop"
) %>%
mutate(periodo = parse_date_time(paste0(ANO4, "-", TRIMESTRE), "Y.q")) %>%
select(periodo, pobreza_estimada = Tasa_pobreza, indigencia_estimada = Tasa_indigencia)
Pobreza_resumen <- Pobreza_resumen %>%
left_join(pobreza_oficial, by = "periodo") %>%
pivot_longer(cols = pobreza_estimada:indigencia_oficial, names_to = c("tipo", "grupo"), values_to = "valor", names_sep = "_", values_drop_na = TRUE)
## ----fig.height=5, fig.width=7, eval=LOCAL------------------------------------
Pobreza_resumen <- Pobreza_resumen %>%
group_by(tipo, grupo) %>%
mutate(
x = lag(periodo),
y = lag(valor)
)
ggplot(Pobreza_resumen, aes(periodo, valor, color = grupo)) +
geom_step(data = Pobreza_resumen %>% filter(grupo == "estimada"), linetype = "dashed") +
geom_segment(
data = Pobreza_resumen %>% filter(grupo == "estimada"),
aes(x = x, y = y, xend = periodo, yend = y), size = 1
) +
geom_point(data = Pobreza_resumen %>% filter(grupo == "oficial"), size = 3) +
facet_wrap(tipo ~ ., scales = "free") +
theme_minimal() +
theme(legend.position = "bottom")
## ----fig.height=5, fig.width=7, eval=LOCAL------------------------------------
pobreza_calificacion <- bases_pobreza %>%
filter(!is.na(situacion), !is.na(PP04D_COD)) %>%
organize_cno(.) %>%
filter(CALIFICACION %in% c("No calificados", "Operativos", "Técnicos", "Profesionales")) %>%
group_by(ANO4, TRIMESTRE, CALIFICACION) %>%
summarise(
pobreza = sum(PONDIH[situacion %in% c("pobre", "indigente")], na.rm = TRUE) / sum(PONDIH, na.rm = TRUE),
indigencia = sum(PONDIH[situacion == "indigente"], na.rm = TRUE) / sum(PONDIH, na.rm = TRUE),
.groups = "drop"
)
pobreza_calificacion %>%
mutate(periodo = parse_date_time(paste0(ANO4, "-", TRIMESTRE), "Y.q")) %>%
pivot_longer(cols = pobreza:indigencia, names_to = c("tipo"), values_to = "tasa") %>%
ggplot(aes(periodo, tasa, fill = tipo)) +
geom_col(position = position_dodge()) +
facet_wrap(. ~ CALIFICACION) +
theme_minimal() +
theme(legend.position = "bottom")
## ----fig.height=7, fig.width=7, eval=LOCAL------------------------------------
pobreza_informalidad <- bases_pobreza %>%
filter(!is.na(situacion), PP07H %in% 1:2) %>%
group_by(ANO4, TRIMESTRE, PP07H) %>%
summarise(
pobreza = sum(PONDIH[situacion %in% c("pobre", "indigente")], na.rm = TRUE) / sum(PONDIH, na.rm = TRUE),
indigencia = sum(PONDIH[situacion == "indigente"], na.rm = TRUE) / sum(PONDIH, na.rm = TRUE),
.groups = "drop"
)
pobreza_informalidad %>%
mutate(
periodo = parse_date_time(paste0(ANO4, "-", TRIMESTRE), "Y.q"),
descuento_jubilatorio = case_when(
PP07H == 1 ~ "Si",
TRUE ~ "No"
)
) %>%
pivot_longer(cols = pobreza:indigencia, names_to = c("tipo"), values_to = "tasa") %>%
ggplot(aes(periodo, tasa, color = descuento_jubilatorio)) +
# geom_col(position = position_dodge())+
geom_point(size = 2) +
geom_smooth() +
facet_wrap(tipo ~ ., scales = "free", ncol = 1) +
theme_minimal() +
theme(
legend.position = "bottom",
text = element_text(size = 14)
)
## ----eval=LOCAL---------------------------------------------------------------
relativos_cba <- canastas_regionales %>%
select(-CBT, -codigo) %>%
pivot_wider(names_from = region, values_from = CBA) %>%
mutate_at(.vars = c("Cuyo", "Noreste", "Noroeste", "Pampeana", "Patagonia"), ~ .x / GBA) %>%
mutate(
GBA = GBA / GBA,
periodo = parse_date_time(periodo, "Y.q")
) # paso a formato fecha los trimestres
relativos_cba
## ----fig.height=5, fig.width=7, eval=LOCAL------------------------------------
ppcc <- data.frame(
region = c("Cuyo", "GBA", "Noreste", "Noroeste", "Pampeana", "Patagonia"),
ppcc = c(.872, 1, .886, .865, .904, .949)
)
relativos_cba %>%
pivot_longer(cols = Cuyo:Patagonia, names_to = "region", values_to = "relativo") %>%
left_join(ppcc, by = c("region")) %>%
mutate(relativo_normalizado = relativo / ppcc) %>%
pivot_longer(names_to = "grupo", cols = c("relativo", "relativo_normalizado", "ppcc"), values_to = "valor") %>%
mutate(grupo = fct_recode(grupo, "efecto total" = "relativo", "efecto composición" = "relativo_normalizado")) %>%
ggplot(aes(periodo, valor, color = region, group = region)) +
geom_line() +
facet_wrap(. ~ grupo) +
theme_minimal() +
theme(legend.position = "bottom")
## ----eval=LOCAL---------------------------------------------------------------
relativos_cbt <- canastas_regionales %>%
select(-CBA, -codigo) %>%
pivot_wider(names_from = region, values_from = CBT) %>%
mutate_at(.vars = c("Cuyo", "Noreste", "Noroeste", "Pampeana", "Patagonia"), ~ .x / GBA) %>%
mutate(
GBA = GBA / GBA,
periodo = parse_date_time(periodo, "Y.q")
) # paso a formato fecha los trimestres
relativos_cbt
## ----fig.height=5, fig.width=7, eval=LOCAL------------------------------------
relativos_cbt %>%
pivot_longer(cols = Cuyo:Patagonia, names_to = "region", values_to = "relativo") %>%
left_join(ppcc, by = c("region")) %>%
mutate(relativo_normalizado = relativo / ppcc) %>%
pivot_longer(names_to = "grupo", cols = c("relativo", "relativo_normalizado", "ppcc"), values_to = "valor") %>%
mutate(grupo = fct_recode(grupo, "efecto total" = "relativo", "efecto composición" = "relativo_normalizado")) %>%
ggplot(aes(periodo, valor, color = region, group = region)) +
geom_line() +
facet_wrap(. ~ grupo) +
theme_minimal() +
theme(legend.position = "bottom")
## ----eval=LOCAL---------------------------------------------------------------
relativos_ice <- canastas_regionales %>%
group_by(region, periodo) %>%
mutate(ice = CBT / CBA) %>%
select(-CBA, -CBT, -codigo) %>%
pivot_wider(names_from = region, values_from = ice) %>%
mutate_at(.vars = c("Cuyo", "Noreste", "Noroeste", "Pampeana", "Patagonia"), ~ .x / GBA) %>%
mutate(
GBA = GBA / GBA,
periodo = parse_date_time(periodo, "Y.q")
) # paso a formato fecha los trimestres
relativos_ice
## ----fig.height=5, fig.width=7, eval=LOCAL------------------------------------
relativos_ice %>%
pivot_longer(cols = Cuyo:Patagonia, names_to = "region", values_to = "relativo") %>%
left_join(ppcc, by = c("region")) %>%
ggplot(aes(periodo, relativo, color = region, group = region)) +
geom_line() +
theme_minimal() +
theme(legend.position = "bottom")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.